These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 32437122)

  • 21. Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling.
    Tian Y; Shao H; Liu X; Chen F; Li Y; Tang C; Zheng Y
    ACS Appl Mater Interfaces; 2021 May; 13(19):22521-22530. PubMed ID: 33950669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving thermo-optic properties of smart windows via coupling to radiative coolers.
    Zhang E; Cao Y; Caloz C; Skorobogatiy M
    Appl Opt; 2020 May; 59(13):D210-D220. PubMed ID: 32400644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling.
    Jing W; Zhang S; Zhang W; Chen Z; Zhang C; Wu D; Gao Y; Zhu H
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34132091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling.
    Woo HY; Choi Y; Chung H; Lee DW; Paik T
    Nano Converg; 2023 Apr; 10(1):17. PubMed ID: 37071232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scalable Colored Subambient Radiative Coolers Based on a Polymer-Tamm Photonic Structure.
    Huang T; Chen Q; Huang J; Lu Y; Xu H; Zhao M; Xu Y; Song W
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16277-16287. PubMed ID: 36930799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photonic-Structure Colored Radiative Coolers for Daytime Subambient Cooling.
    Yu S; Zhang Q; Wang Y; Lv Y; Ma R
    Nano Lett; 2022 Jun; 22(12):4925-4932. PubMed ID: 35686917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly effective photon-to-cooling thermal device.
    Tian Y; Qian L; Liu X; Ghanekar A; Xiao G; Zheng Y
    Sci Rep; 2019 Dec; 9(1):19317. PubMed ID: 31848366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity.
    Zhong H; Zhang P; Li Y; Yang X; Zhao Y; Wang Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51409-51417. PubMed ID: 33147941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-Encapsulated Nanocomposite for Efficient Thermal Buffering in Heat-Generating Radiative Cooling.
    Zhai H; Liu C; Fan D; Li Q
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57215-57224. PubMed ID: 36484240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling.
    Zhang J; Zhou Z; Tang H; Xing J; Quan J; Liu J; Yu J; Hu M
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14132-14140. PubMed ID: 33724770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient Thin Polymer Coating as a Selective Thermal Emitter for Passive Daytime Radiative Cooling.
    Banik U; Agrawal A; Meddeb H; Sergeev O; Reininghaus N; Götz-Köhler M; Gehrke K; Stührenberg J; Vehse M; Sznajder M; Agert C
    ACS Appl Mater Interfaces; 2021 May; 13(20):24130-24137. PubMed ID: 33974398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle.
    Chen Z; Zhu L; Raman A; Fan S
    Nat Commun; 2016 Dec; 7():13729. PubMed ID: 27959339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloidal Photonic Assemblies for Colorful Radiative Cooling.
    Kim HH; Im E; Lee S
    Langmuir; 2020 Jun; 36(23):6589-6596. PubMed ID: 32370514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling.
    Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Multilayer Emitter Close to Ideal Solar Reflectance for Efficient Daytime Radiative Cooling.
    Zhu Y; Wang D; Fang C; He P; Ye YH
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31323830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Self-Assembled 2D Thermofunctional Material for Radiative Cooling.
    Jaramillo-Fernandez J; Whitworth GL; Pariente JA; Blanco A; Garcia PD; Lopez C; Sotomayor-Torres CM
    Small; 2019 Dec; 15(52):e1905290. PubMed ID: 31650687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined nano and micro structuring for enhanced radiative cooling and efficiency of photovoltaic cells.
    Perrakis G; Tasolamprou AC; Kenanakis G; Economou EN; Tzortzakis S; Kafesaki M
    Sci Rep; 2021 Jun; 11(1):11552. PubMed ID: 34079009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Radiative Cooling on Reducing the Temperature of Greenhouses.
    Liu CH; Ay C; Kan JC; Lee MT
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29987204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Daytime Sub-Ambient Radiative Cooling with Vivid Structural Colors Mediated by Coupled Nanocavities.
    Jin S; Xiao M; Zhang W; Wang B; Zhao C
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54676-54687. PubMed ID: 36454716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.