These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32437145)
1. Assessment of Binding Affinity via Alchemical Free-Energy Calculations. Kuhn M; Firth-Clark S; Tosco P; Mey ASJS; Mackey M; Michel J J Chem Inf Model; 2020 Jun; 60(6):3120-3130. PubMed ID: 32437145 [TBL] [Abstract][Full Text] [Related]
2. Blinded prediction of protein-ligand binding affinity using Amber thermodynamic integration for the 2018 D3R grand challenge 4. Zou J; Tian C; Simmerling C J Comput Aided Mol Des; 2019 Dec; 33(12):1021-1029. PubMed ID: 31555923 [TBL] [Abstract][Full Text] [Related]
3. Binding Thermodynamics and Interaction Patterns of Inhibitor-Major Urinary Protein-I Binding from Extensive Free-Energy Calculations: Benchmarking AMBER Force Fields. Huai Z; Shen Z; Sun Z J Chem Inf Model; 2021 Jan; 61(1):284-297. PubMed ID: 33307679 [TBL] [Abstract][Full Text] [Related]
4. Impact of domain knowledge on blinded predictions of binding energies by alchemical free energy calculations. Mey ASJS; Jiménez JJ; Michel J J Comput Aided Mol Des; 2018 Jan; 32(1):199-210. PubMed ID: 29134431 [TBL] [Abstract][Full Text] [Related]
5. Ligand Binding Affinity Prediction for Membrane Proteins with Alchemical Free Energy Calculation Methods. Zhang H; Im W J Chem Inf Model; 2024 Jul; 64(14):5671-5679. PubMed ID: 38959405 [TBL] [Abstract][Full Text] [Related]
6. Implementation of the QUBE Force Field in SOMD for High-Throughput Alchemical Free-Energy Calculations. Nelson L; Bariami S; Ringrose C; Horton JT; Kurdekar V; Mey ASJS; Michel J; Cole DJ J Chem Inf Model; 2021 May; 61(5):2124-2130. PubMed ID: 33886305 [TBL] [Abstract][Full Text] [Related]
7. FEW: a workflow tool for free energy calculations of ligand binding. Homeyer N; Gohlke H J Comput Chem; 2013 Apr; 34(11):965-73. PubMed ID: 23288722 [TBL] [Abstract][Full Text] [Related]
8. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs. Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826 [TBL] [Abstract][Full Text] [Related]
9. Large scale relative protein ligand binding affinities using non-equilibrium alchemy. Gapsys V; Pérez-Benito L; Aldeghi M; Seeliger D; van Vlijmen H; Tresadern G; de Groot BL Chem Sci; 2019 Dec; 11(4):1140-1152. PubMed ID: 34084371 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory. Marchese Robinson RL; Geatches D; Morris C; Mackenzie R; Maloney AGP; Roberts KJ; Moldovan A; Chow E; Pencheva K; Vatvani DRM J Chem Inf Model; 2019 Nov; 59(11):4778-4792. PubMed ID: 31638394 [TBL] [Abstract][Full Text] [Related]
11. Alchemical Free Energy Estimators and Molecular Dynamics Engines: Accuracy, Precision, and Reproducibility. Wade AD; Bhati AP; Wan S; Coveney PV J Chem Theory Comput; 2022 Jun; 18(6):3972-3987. PubMed ID: 35609233 [TBL] [Abstract][Full Text] [Related]
12. Blinded predictions of binding modes and energies of HSP90-α ligands for the 2015 D3R grand challenge. Mey ASJS; Juárez-Jiménez J; Hennessy A; Michel J Bioorg Med Chem; 2016 Oct; 24(20):4890-4899. PubMed ID: 27485604 [TBL] [Abstract][Full Text] [Related]
13. Performance and Analysis of the Alchemical Transfer Method for Binding-Free-Energy Predictions of Diverse Ligands. Chen L; Wu Y; Wu C; Silveira A; Sherman W; Xu H; Gallicchio E J Chem Inf Model; 2024 Jan; 64(1):250-264. PubMed ID: 38147877 [TBL] [Abstract][Full Text] [Related]
14. Extension of the free energy workflow FEW towards implicit solvent/implicit membrane MM-PBSA calculations. Homeyer N; Gohlke H Biochim Biophys Acta; 2015 May; 1850(5):972-982. PubMed ID: 25450172 [TBL] [Abstract][Full Text] [Related]
15. AMBER Drug Discovery Boost Tools: Automated Workflow for Production Free-Energy Simulation Setup and Analysis (ProFESSA). Ganguly A; Tsai HC; Fernández-Pendás M; Lee TS; Giese TJ; York DM J Chem Inf Model; 2022 Dec; 62(23):6069-6083. PubMed ID: 36450130 [TBL] [Abstract][Full Text] [Related]
16. Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset. Elisée E; Gapsys V; Mele N; Chaput L; Selwa E; de Groot BL; Iorga BI J Comput Aided Mol Des; 2019 Dec; 33(12):1031-1043. PubMed ID: 31677003 [TBL] [Abstract][Full Text] [Related]
17. Accuracy assessment and automation of free energy calculations for drug design. Christ CD; Fox T J Chem Inf Model; 2014 Jan; 54(1):108-20. PubMed ID: 24256082 [TBL] [Abstract][Full Text] [Related]
18. Identification of Optimal Ligand Growth Vectors Using an Alchemical Free-Energy Method. Wade AD; Huggins DJ J Chem Inf Model; 2020 Nov; 60(11):5580-5594. PubMed ID: 32810401 [TBL] [Abstract][Full Text] [Related]
19. Alchemical free energy calculations via metadynamics: Application to the theophylline-RNA aptamer complex. Tanida Y; Matsuura A J Comput Chem; 2020 Jul; 41(20):1804-1819. PubMed ID: 32449538 [TBL] [Abstract][Full Text] [Related]
20. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]