BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32437155)

  • 1. Characterization of Bulk Nanobubbles Formed by Using a Porous Alumina Film with Ordered Nanopores.
    Ma T; Kimura Y; Yamamoto H; Feng X; Hirano-Iwata A; Niwano M
    J Phys Chem B; 2020 Jun; 124(24):5067-5072. PubMed ID: 32437155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bactericidal Activity of Bulk Nanobubbles through Active Oxygen Species Generation.
    Yamaguchi M; Ma T; Tadaki D; Hirano-Iwata A; Watanabe Y; Kanetaka H; Fujimori H; Takemoto E; Niwano M
    Langmuir; 2021 Aug; ():. PubMed ID: 34339599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective.
    Babu KS; Amamcharla JK
    Crit Rev Food Sci Nutr; 2023; 63(28):9262-9281. PubMed ID: 35467989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bulk nanobubbles: Production and investigation of their formation/stability mechanism.
    Michailidi ED; Bomis G; Varoutoglou A; Kyzas GZ; Mitrikas G; Mitropoulos AC; Efthimiadou EK; Favvas EP
    J Colloid Interface Sci; 2020 Mar; 564():371-380. PubMed ID: 31918204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Internal Pressures and Long-Term Stability of Nanobubbles in Water.
    Shi X; Xue S; Marhaba T; Zhang W
    Langmuir; 2021 Feb; 37(7):2514-2522. PubMed ID: 33538170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bulk Nanobubbles Fabricated by Repeated Compression of Microbubbles.
    Jin J; Feng Z; Yang F; Gu N
    Langmuir; 2019 Mar; 35(12):4238-4245. PubMed ID: 30817886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.
    Ahmed AKA; Sun C; Hua L; Zhang Z; Zhang Y; Zhang W; Marhaba T
    Chemosphere; 2018 Jul; 203():327-335. PubMed ID: 29626810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of nanobubbles on Langmuir-Blodgett films.
    Foudas AW; Kyzas GZ; Metaxa ZS; Mitropoulos AC
    J Colloid Interface Sci; 2024 Sep; 669():327-335. PubMed ID: 38718586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating Bulk Nanobubbles in Alcohol Systems.
    Ji Y; Guo Z; Tan T; Wang Y; Zhang L; Hu J; Zhang Y
    ACS Omega; 2021 Feb; 6(4):2873-2881. PubMed ID: 33553905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aeration and dissolution behavior of oxygen nanobubbles in water.
    Xue S; Zhang Y; Marhaba T; Zhang W
    J Colloid Interface Sci; 2022 Mar; 609():584-591. PubMed ID: 34815086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and Stability of Size-Adjustable Bulk Nanobubbles Based on Periodic Pressure Change.
    Wang Q; Zhao H; Qi N; Qin Y; Zhang X; Li Y
    Sci Rep; 2019 Feb; 9(1):1118. PubMed ID: 30718777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation of Cavitation Bulk Nanobubbles Characteristics: Effects of pH and Surface-Active Agents.
    Prakash R; Lee J; Moon Y; Pradhan D; Kim SH; Lee HY; Lee J
    Langmuir; 2023 Feb; 39(5):1968-1986. PubMed ID: 36692411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of electrolytes and surfactants on generation and longevity of carbon dioxide nanobubbles.
    Phan K; Truong T; Wang Y; Bhandari B
    Food Chem; 2021 Nov; 363():130299. PubMed ID: 34147892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Generation of Monodisperse Nanobubbles by Selective Gas Dissolution.
    Xu J; Salari A; Wang Y; He X; Kerr L; Darbandi A; de Leon AC; Exner AA; Kolios MC; Yuen D; Tsai SSH
    Small; 2021 May; 17(20):e2100345. PubMed ID: 33811441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of Oxygen Nanobubbles under Freshwater Conditions.
    Soyluoglu M; Kim D; Zaker Y; Karanfil T
    Water Res; 2021 Nov; 206():117749. PubMed ID: 34678695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis.
    Gao Z; Wu W; Sun W; Wang B
    Langmuir; 2021 Sep; 37(38):11281-11291. PubMed ID: 34520212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Ordered Anodic Porous Alumina with Single-Nanometer-Order-Size Holes by Atomic Layer Deposition.
    Yanagishita T; Otsuka M; Takei T; Uto S; Masuda H
    Langmuir; 2021 Jul; 37(27):8331-8338. PubMed ID: 34185523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical generation and bactericidal activity of nanobubbles produced by ultrasonic irradiation of carbonated water.
    Mokudai T; Kawada M; Tadaki D; Hirano-Iwata A; Kanetaka H; Fujimori H; Takemoto E; Niwano M
    Ultrason Sonochem; 2024 Feb; 103():106809. PubMed ID: 38364483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dissolved-gas concentration on bulk nanobubbles generation using ultrasonication.
    Lee JI; Yim BS; Kim JM
    Sci Rep; 2020 Nov; 10(1):18816. PubMed ID: 33139819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition of Thin Alumina Films Containing 3D Ordered Network of Nanopores on Porous Substrates.
    Tkalčević M; Gotić M; Basioli L; Lihter M; Dražić G; Bernstorff S; Vuletić T; Mičetić M
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32604995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.