These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32437256)

  • 21. Executive impairment in Parkinson's disease: response automaticity and task switching.
    Cameron IG; Watanabe M; Pari G; Munoz DP
    Neuropsychologia; 2010 Jun; 48(7):1948-57. PubMed ID: 20303998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Further analysis of the control of voluntary saccadic eye movements in schizophrenic patients.
    Fukushima J; Fukushima K; Morita N; Yamashita I
    Biol Psychiatry; 1990 Dec; 28(11):943-58. PubMed ID: 2275952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age related prefrontal compensatory mechanisms for inhibitory control in the antisaccade task.
    Fernandez-Ruiz J; Peltsch A; Alahyane N; Brien DC; Coe BC; Garcia A; Munoz DP
    Neuroimage; 2018 Jan; 165():92-101. PubMed ID: 28988829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facing competition: Neural mechanisms underlying parallel programming of antisaccades and prosaccades.
    Talanow T; Kasparbauer AM; Steffens M; Meyhöfer I; Weber B; Smyrnis N; Ettinger U
    Brain Cogn; 2016 Aug; 107():37-47. PubMed ID: 27363008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Older adults elicit a single-bout post-exercise executive benefit across a continuum of aerobically supported metabolic intensities.
    Petrella AFM; Belfry G; Heath M
    Brain Res; 2019 Jun; 1712():197-206. PubMed ID: 30753817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Error correcting mechanisms during antisaccades: contribution of online control during primary saccades and offline control via secondary saccades.
    Bedi H; Goltz HC; Wong AM; Chandrakumar M; Niechwiej-Szwedo E
    PLoS One; 2013; 8(8):e68613. PubMed ID: 23936308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oculomotor task switching: alternating from a nonstandard to a standard response yields the unidirectional prosaccade switch-cost.
    Weiler J; Heath M
    J Neurophysiol; 2014 Nov; 112(9):2176-84. PubMed ID: 25122700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Simon Effect With Saccadic Eye Movements.
    Lugli L; Baroni G; Nicoletti R; Umiltà C
    Exp Psychol; 2016 Mar; 63(2):107-16. PubMed ID: 27221601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials.
    Brown MR; Goltz HC; Vilis T; Ford KA; Everling S
    Neuroimage; 2006 Nov; 33(2):644-59. PubMed ID: 16949303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Switch costs in inhibitory control and voluntary behaviour: A computational study of the antisaccade task.
    Aponte EA; Stephan KE; Heinzle J
    Eur J Neurosci; 2019 Oct; 50(7):3205-3220. PubMed ID: 31081574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced attentional engagement contributes to deficits in prefrontal inhibitory control in schizophrenia.
    Reilly JL; Harris MS; Khine TT; Keshavan MS; Sweeney JA
    Biol Psychiatry; 2008 Apr; 63(8):776-83. PubMed ID: 18191110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuropsychological and clinical correlates of antisaccade task performance in schizophrenia.
    Nieman DH; Bour LJ; Linszen DH; Goede J; Koelman JH; Gersons BP; Ongerboer de Visser BW
    Neurology; 2000 Feb; 54(4):866-71. PubMed ID: 10690978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trial-type probability and task-switching effects on behavioral response characteristics in a mixed saccade task.
    Pierce JE; McCardel JB; McDowell JE
    Exp Brain Res; 2015 Mar; 233(3):959-69. PubMed ID: 25537465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition failures and late errors in the antisaccade task: influence of cue delay.
    Aponte EA; Tschan DG; Stephan KE; Heinzle J
    J Neurophysiol; 2018 Dec; 120(6):3001-3016. PubMed ID: 30110237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poor antisaccade performance in schizophrenia: an inhibition deficit?
    Reuter B; Rakusan L; Kathmanna N
    Psychiatry Res; 2005 May; 135(1):1-10. PubMed ID: 15893384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dorsolateral prefrontal cortex hyperactivity during inhibitory control in children with ADHD in the antisaccade task.
    Fernandez-Ruiz J; Hakvoort Schwerdtfeger RM; Alahyane N; Brien DC; Coe BC; Munoz DP
    Brain Imaging Behav; 2020 Dec; 14(6):2450-2463. PubMed ID: 31493141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced Cognitive Control Demands after Practice of Saccade Tasks in a Trial Type Probability Manipulation.
    Pierce JE; McDowell JE
    J Cogn Neurosci; 2017 Feb; 29(2):368-381. PubMed ID: 27676615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of volition latency on antisaccadic eye movements.
    Chen YF; Chen T; Tsai TT
    Med Eng Phys; 1999 Oct; 21(8):555-62. PubMed ID: 10672789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physically active undergraduates perform better on executive-related oculomotor control: Evidence from the antisaccade task and pupillometry.
    Zhou J; Zhuang W
    Psych J; 2023 Feb; 12(1):17-24. PubMed ID: 36109011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating behavior inhibition in obsessive-compulsive disorder: Evidence from eye movements.
    Hu Y; Liao R; Chen W; Kong X; Liu J; Liu D; Maguire P; Zhou S; Wang D
    Scand J Psychol; 2020 Oct; 61(5):634-641. PubMed ID: 32027033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.