These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32437616)

  • 1. Giant Tunable Mechanical Nonlinearity in Graphene-Silicon Nitride Hybrid Resonator.
    Singh R; Sarkar A; Guria C; Nicholl RJT; Chakraborty S; Bolotin KI; Ghosh S
    Nano Lett; 2020 Jun; 20(6):4659-4666. PubMed ID: 32437616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion Transduction with Thermo-mechanically Squeezed Graphene Resonator Modes.
    Singh R; Nicholl RJT; Bolotin KI; Ghosh S
    Nano Lett; 2018 Nov; 18(11):6719-6724. PubMed ID: 30347160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled Nanomechanical Graphene Resonators: A Promising Platform for Scalable NEMS Networks.
    Carter B; Hernandez UF; Miller DJ; Blaikie A; Horowitz VR; Alemán BJ
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators.
    Eriksson AM; Midtvedt D; Croy A; Isacsson A
    Nanotechnology; 2013 Oct; 24(39):395702. PubMed ID: 24008430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-
    Zhou X; Venkatachalam S; Zhou R; Xu H; Pokharel A; Fefferman A; Zaknoune M; Collin E
    Nano Lett; 2021 Jul; 21(13):5738-5744. PubMed ID: 34132554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the nonlinearity of graphene mechanical resonators by Joule heating.
    Suo JJ; Li WJ; Cheng ZD; Zhao ZF; Chen H; Li BL; Zhou Q; Wang Y; Song HZ; Niu XB; Deng GW
    J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35779515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable parametric amplification of a graphene nanomechanical resonator in the nonlinear regime.
    Su ZJ; Ying Y; Song XX; Zhang ZZ; Zhang QH; Cao G; Li HO; Guo GC; Guo GP
    Nanotechnology; 2021 Apr; 32(15):155203. PubMed ID: 33181503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums.
    Mathew JP; Patel RN; Borah A; Vijay R; Deshmukh MM
    Nat Nanotechnol; 2016 Sep; 11(9):747-51. PubMed ID: 27294506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene metallization of high-stress silicon nitride resonators for electrical integration.
    Lee S; Adiga VP; Barton RA; van der Zande AM; Lee GH; Ilic BR; Gondarenko A; Parpia JM; Craighead HG; Hone J
    Nano Lett; 2013 Sep; 13(9):4275-9. PubMed ID: 23905749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Quality Factor Graphene-Based Two-Dimensional Heterostructure Mechanical Resonator.
    Will M; Hamer M; Müller M; Noury A; Weber P; Bachtold A; Gorbachev RV; Stampfer C; Güttinger J
    Nano Lett; 2017 Oct; 17(10):5950-5955. PubMed ID: 28906119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon lasing with an atomic thin membrane resonator at room temperature.
    Li WJ; Cheng ZD; Kang LZ; Zhang RM; Fan BY; Zhou Q; Wang Y; Song HZ; Arutyunov KY; Niu XB; Deng GW
    Opt Express; 2021 May; 29(11):16241-16248. PubMed ID: 34154191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent phonon dynamics in spatially separated graphene mechanical resonators.
    Zhang ZZ; Song XX; Luo G; Su ZJ; Wang KL; Cao G; Li HO; Xiao M; Guo GC; Tian L; Deng GW; Guo GP
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5582-5587. PubMed ID: 32123110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilizing Gate-Controlled Supercurrent for All-Metallic Tunable Superconducting Microwave Resonators.
    Ryu Y; Jeong J; Suh J; Kim J; Choi H; Cha J
    Nano Lett; 2024 Jan; 24(4):1223-1230. PubMed ID: 38232153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gate Tunable Cooperativity between Vibrational Modes.
    Prasad P; Arora N; Naik AK
    Nano Lett; 2019 Sep; 19(9):5862-5867. PubMed ID: 31408355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gate-tunable frequency combs in graphene-nitride microresonators.
    Yao B; Huang SW; Liu Y; Vinod AK; Choi C; Hoff M; Li Y; Yu M; Feng Z; Kwong DL; Huang Y; Rao Y; Duan X; Wong CW
    Nature; 2018 Jun; 558(7710):410-414. PubMed ID: 29892031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling graphene nanomechanical motion to a single-electron transistor.
    Luo G; Zhang ZZ; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Guo GP
    Nanoscale; 2017 May; 9(17):5608-5614. PubMed ID: 28422197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable micro- and nanomechanical resonators.
    Zhang WM; Hu KM; Peng ZK; Meng G
    Sensors (Basel); 2015 Oct; 15(10):26478-566. PubMed ID: 26501294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity.
    Luo G; Zhang ZZ; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Tian L; Guo GP
    Nat Commun; 2018 Jan; 9(1):383. PubMed ID: 29374169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator.
    Katz I; Retzker A; Straub R; Lifshitz R
    Phys Rev Lett; 2007 Jul; 99(4):040404. PubMed ID: 17678342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Graphene Phononic Crystal.
    Kirchhof JN; Weinel K; Heeg S; Deinhart V; Kovalchuk S; Höflich K; Bolotin KI
    Nano Lett; 2021 Mar; 21(5):2174-2182. PubMed ID: 33622035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.