BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32437801)

  • 1. Analysis of the water-soluble polysaccharides from Camellia japonica pollen and their inhibitory effects on galectin-3 function.
    Zhou L; Ma P; Shuai M; Huang J; Sun C; Yao X; Chen Z; Min X; Zhang T
    Int J Biol Macromol; 2020 Sep; 159():455-460. PubMed ID: 32437801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractionation and antioxidant activities of the water-soluble polysaccharides from Lonicera japonica Thunb.
    Zhang T; Liu H; Bai X; Liu P; Yang Y; Huang J; Zhou L; Min X
    Int J Biol Macromol; 2020 May; 151():1058-1066. PubMed ID: 31739015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Characterization of a Rhamnogalacturonan I Domain from Ginseng and Its Inhibitory Effect on Galectin-3.
    Shi H; Yu L; Shi Y; Lu J; Teng H; Zhou Y; Sun L
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28629160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the neutral polysaccharide fraction of MCP and its inhibitory activity on galectin-3.
    Gao X; Zhi Y; Zhang T; Xue H; Wang X; Foday AD; Tai G; Zhou Y
    Glycoconj J; 2012 May; 29(4):159-65. PubMed ID: 22562786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antitumor activity of bee pollen polysaccharides from Rosa rugosa.
    Wang B; Diao Q; Zhang Z; Liu Y; Gao Q; Zhou Y; Li S
    Mol Med Rep; 2013 May; 7(5):1555-8. PubMed ID: 23525233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship.
    Gao X; Zhi Y; Sun L; Peng X; Zhang T; Xue H; Tai G; Zhou Y
    J Biol Chem; 2013 Nov; 288(47):33953-33965. PubMed ID: 24100038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysaccharide structure and immunological relationships of RG-I pectin from the bee pollen of Nelumbo nucifera.
    Li S; Yang G; Yan J; Wu D; Hou Y; Diao Q; Zhou Y
    Int J Biol Macromol; 2018 May; 111():660-666. PubMed ID: 29320727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of water-soluble polysaccharides isolated from Panax notoginseng.
    Chan MK; Yu Y; Wulamu S; Wang Y; Wang Q; Zhou Y; Sun L
    Int J Biol Macromol; 2020 Jul; 155():376-385. PubMed ID: 32240740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of pectin from Panax ginseng flower buds and their binding activities to galectin-3.
    Cui L; Wang J; Huang R; Tan Y; Zhang F; Zhou Y; Sun L
    Int J Biol Macromol; 2019 May; 128():459-467. PubMed ID: 30703424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and structural characterization of a new water-soluble neutral polysaccharide GLP-F1-1 from Ganoderma lucidum.
    Huang SQ; Li JW; Li YQ; Wang Z
    Int J Biol Macromol; 2011 Jan; 48(1):165-9. PubMed ID: 21044645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of a lectin binding rhamnogalacturonan-I containing pectic polysaccharide from pumpkin.
    Zhao J; Zhang F; Liu X; St Ange K; Zhang A; Li Q; Linhardt RJ
    Carbohydr Polym; 2017 May; 163():330-336. PubMed ID: 28267513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterisation of polysaccharides from roasted hazelnut skins.
    Košťálová Z; Hromádková Z
    Food Chem; 2019 Jul; 286():179-184. PubMed ID: 30827593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polysaccharides extracted with hot water from wild Prunus spinosa L. berries.
    Capek P; Delort AM
    Carbohydr Res; 2023 Jul; 529():108852. PubMed ID: 37224730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of galectin-3 mediated cellular interactions by pectic polysaccharides from dietary sources.
    Sathisha UV; Jayaram S; Harish Nayaka MA; Dharmesh SM
    Glycoconj J; 2007 Nov; 24(8):497-507. PubMed ID: 17525829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polysaccharides of
    Golovchenko V; Popov S; Smirnov V; Khlopin V; Vityazev F; Naranmandakh S; Dmitrenok AS; Shashkov AS
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive polysaccharides from the stems of the Thai medicinal plant Acanthus ebracteatus: their chemical and physical features.
    Hokputsa S; Harding SE; Inngjerdingen K; Jumel K; Michaelsen TE; Heinze T; Koschella A; Paulsen BS
    Carbohydr Res; 2004 Mar; 339(4):753-62. PubMed ID: 14980816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening active fractions from Pinus massoniana pollen for inhibiting ALV-J replication and their structure activity relationship investigation.
    Cui W; Huang J; Niu X; Shang H; Sha Z; Miao Y; Wang H; Chen R; Wei K; Zhu R
    Vet Microbiol; 2021 Jan; 252():108908. PubMed ID: 33254056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α-Amylase-assisted extraction of polysaccharides from Panax ginseng.
    Sun L; Wu D; Ning X; Yang G; Lin Z; Tian M; Zhou Y
    Int J Biol Macromol; 2015 Apr; 75():152-7. PubMed ID: 25616118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification, characterization and anticoagulant activity of the polysaccharides from green tea.
    Cai W; Xie L; Chen Y; Zhang H
    Carbohydr Polym; 2013 Feb; 92(2):1086-90. PubMed ID: 23399132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization and anti-oxidation activity of pectic polysaccharides from Swertia mileensis.
    Pak U; Cheng H; Liu X; Wang Y; Ho C; Ri H; Xu J; Qi X; Yu H
    Int J Biol Macromol; 2023 Sep; 248():125896. PubMed ID: 37481190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.