These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32437804)

  • 21. Effect of germination on the structures and physicochemical properties of starches from brown rice, oat, sorghum, and millet.
    Li C; Oh SG; Lee DH; Baik HW; Chung HJ
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):931-939. PubMed ID: 28743574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphological, structural, thermal, and rheological characteristics of starches separated from apples of different cultivars.
    Singh N; Inouchi N; Nishinari K
    J Agric Food Chem; 2005 Dec; 53(26):10193-9. PubMed ID: 16366714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ball-milling: A sustainable and green approach for starch modification.
    Bangar SP; Singh A; Ashogbon AO; Bobade H
    Int J Biol Macromol; 2023 May; 237():124069. PubMed ID: 36940765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Techno-functional characterization of chitosan nanoparticles prepared through planetary ball milling.
    Wani TA; Masoodi FA; Akhter R; Sofi FA
    Int J Biol Macromol; 2020 Jul; 154():166-172. PubMed ID: 32151719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of a nano fluorescent starch.
    Li H; Zhang B; Lü S; Ma H; Liu M
    Int J Biol Macromol; 2018 Dec; 120(Pt A):1225-1231. PubMed ID: 30170052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols.
    Lv Y; Zhang L; Li M; He X; Hao L; Dai Y
    Int J Biol Macromol; 2019 May; 129():207-213. PubMed ID: 30738160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods.
    Sun Q; Fan H; Xiong L
    Carbohydr Polym; 2014 Jun; 106():359-64. PubMed ID: 24721090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural, thermal and rheological properties of starches isolated from Indian quinoa varieties.
    Jan KN; Panesar PS; Rana JC; Singh S
    Int J Biol Macromol; 2017 Sep; 102():315-322. PubMed ID: 28396270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of acid hydrolysis based nano-converted mung bean (Vigna radiata L.) starch for morphological, rheological and thermal properties.
    Kumari S; Yadav BS; Yadav R
    Int J Biol Macromol; 2022 Jun; 211():450-459. PubMed ID: 35577200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in Morphological and Physicochemical Properties of Waxy and Non-waxy Proso Millets during Cooking Process.
    Yang Q; Liu L; Zhang W; Li J; Gao X; Feng B
    Foods; 2019 Nov; 8(11):. PubMed ID: 31744184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of tapioca starch nanoparticles by nanoprecipitation-sonication treatment.
    Hedayati S; Niakousari M; Mohsenpour Z
    Int J Biol Macromol; 2020 Jan; 143():136-142. PubMed ID: 31805331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation.
    Sun Q; Li G; Dai L; Ji N; Xiong L
    Food Chem; 2014 Nov; 162():223-8. PubMed ID: 24874379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties.
    Wang X; Chen H; Luo Z; Fu X
    Carbohydr Polym; 2016 Mar; 138():192-200. PubMed ID: 26794752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of heat treatment and γ-irradiation on pasting, rheological, and fungal load of whole and dehulled millets.
    Huang HH; Dikkala PK; Sridhar K; Yang HT; Lee JT; Tsai FJ
    Food Sci Technol Int; 2022 Apr; 28(3):273-282. PubMed ID: 34000861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of nutritional and antinutritional components on dough rheology and in vitro protein & starch digestibility of minor millets.
    Sharma B; Gujral HS
    Food Chem; 2019 Nov; 299():125115. PubMed ID: 31288161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Starch nanoparticles formation via high power ultrasonication.
    Bel Haaj S; Magnin A; Pétrier C; Boufi S
    Carbohydr Polym; 2013 Feb; 92(2):1625-32. PubMed ID: 23399199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel starch from Pongamia pinnata seeds: Comparison of its thermal, morphological and rheological behaviour with starches from other botanical sources.
    Siroha AK; Punia S; Kaur M; Sandhu KS
    Int J Biol Macromol; 2020 Jan; 143():984-990. PubMed ID: 31747566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of nano-TiO
    Chen L; Xiong Z; Xiong H; Wang Z; Din ZU; Nawaz A; Wang P; Hu C
    Carbohydr Polym; 2018 Nov; 200():477-486. PubMed ID: 30177189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of several types of millets as functional food ingredients.
    Bora P; Ragaee S; Marcone M
    Int J Food Sci Nutr; 2019 Sep; 70(6):714-724. PubMed ID: 30969135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physico-chemical and rheological properties of Bengal gram (Cicer arietinum L.) starch as affected by high temperature short time extrusion.
    Wani IA; Farooq G; Qadir N; Wani TA
    Int J Biol Macromol; 2019 Jun; 131():850-857. PubMed ID: 30905753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.