These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32438544)

  • 1. Microcrystalline Cellulose Extracted from Native Plants as an Excipient for Solid Dosage Formulations in Drug Delivery.
    Viera-Herrera C; Santamaría-Aguirre J; Vizuete K; Debut A; Whitehead DC; Alexis F
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32438544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of non-crystalline cellulose as a novel excipient in solid dose products.
    Pawar K; Render D; Rangari V; Lee Y; Babu RJ
    Drug Dev Ind Pharm; 2018 Sep; 44(9):1512-1519. PubMed ID: 29734848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient.
    Adeleye OA; Bamiro OA; Albalawi DA; Alotaibi AS; Iqbal H; Sanyaolu S; Femi-Oyewo MN; Sodeinde KO; Yahaya ZS; Thiripuranathar G; Menaa F
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery.
    Villanova JC; Ayres E; Carvalho SM; Patrício PS; Pereira FV; Oréfice RL
    Eur J Pharm Sci; 2011 Mar; 42(4):406-15. PubMed ID: 21241802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Excipient For Oral Drug Delivery: CNC Derived From Sugarcane Bagasse-Derived Microcrystalline Cellulose.
    Mishra S
    ACS Omega; 2024 Apr; 9(17):19353-19362. PubMed ID: 38708209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Novel Co-processed Excipitient Comprising of Xylitol, Mannitol, Microcrystalline Cellulose, and Crospovidone for the Compounding of Memantine Hydrochloride Orally Disintegrating Tablet.
    Hazdi SN; Phang HC; Ng ZQ; Chew YL; Uddin AH; Sarker ZI; Lee SK; Liew KB
    Int J Pharm Compd; 2023; 27(6):522-527. PubMed ID: 38100670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression.
    Domínguez-Robles J; Stewart SA; Rendl A; González Z; Donnelly RF; Larrañeta E
    Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31466387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Aquasolv Lignin in ibuprofen-loaded pharmaceutical formulations obtained via direct compression and wet granulation.
    Gil-Chávez J; Padhi SSP; Leopold CS; Smirnova I
    Int J Biol Macromol; 2021 Mar; 174():229-239. PubMed ID: 33454332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties.
    Alamdari NE; Aksoy B; Babu RJ; Jiang Z
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132298. PubMed ID: 38750863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined study of biphasic and zero-order release formulations with dissolution tests and ATR-FTIR spectroscopic imaging.
    Wray P; Li J; Li LQ; Kazarian SG
    J Pharm Sci; 2014 Jul; 103(7):1995-2004. PubMed ID: 24801351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.
    Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA
    Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients.
    Zhao H; Zhao L; Lin X; Shen L
    Carbohydr Polym; 2022 Feb; 278():118968. PubMed ID: 34973783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of silicified microcrystalline cellulose (Prosolv) as a polymer carrier of Epilobium parviflorum Schreb. extract in oral solid drug form.
    Marczyński Z; Zgoda MM; Jambor J
    Polim Med; 2007; 37(2):21-32. PubMed ID: 17957946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes.
    Kushner J; Langdon BA; Hicks I; Song D; Li F; Kathiria L; Kane A; Ranade G; Agarwal K
    J Pharm Sci; 2014 Feb; 103(2):527-38. PubMed ID: 24375069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile.
    Hosseini A; Körber M; Bodmeier R
    Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IDENTIFICATION OF PHARMACEUTICAL EXCIPIENT BEHAVIOR OF CHICKPEA (CICER ARIETINUM) STARCH IN GLICLAZIDE IMMEDIATE RELEASE TABLETS.
    Meka VS; Yee P; Sheshala R
    Acta Pol Pharm; 2016; 73(2):469-78. PubMed ID: 27180440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the Tableting Properties of MCR, a Newly Coprocessed Cellulose-based Direct Compression Excipient.
    Aly S
    Turk J Pharm Sci; 2019 Jun; 16(2):161-168. PubMed ID: 32454709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of rapidly disintegrating tablet using new types of microcrystalline cellulose (PH-M series) and low substituted-hydroxypropylcellulose or spherical sugar granules by direct compression method.
    Ishikawa T; Mukai B; Shiraishi S; Utoguchi N; Fujii M; Matsumoto M; Watanabe Y
    Chem Pharm Bull (Tokyo); 2001 Feb; 49(2):134-9. PubMed ID: 11217097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression.
    Nakamura S; Tanaka C; Yuasa H; Sakamoto T
    AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.