These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 32438742)

  • 1. Osteochondral Regeneration Using Adipose Tissue-Derived Mesenchymal Stem Cells.
    Murata D; Fujimoto R; Nakayama K
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32438742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells.
    Murata D; Tokunaga S; Tamura T; Kawaguchi H; Miyoshi N; Fujiki M; Nakayama K; Misumi K
    J Orthop Surg Res; 2015 Mar; 10():35. PubMed ID: 25890366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteochondral regeneration using constructs of mesenchymal stem cells made by bio three-dimensional printing in mini-pigs.
    Yamasaki A; Kunitomi Y; Murata D; Sunaga T; Kuramoto T; Sogawa T; Misumi K
    J Orthop Res; 2019 Jun; 37(6):1398-1408. PubMed ID: 30561041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells.
    Ishihara K; Nakayama K; Akieda S; Matsuda S; Iwamoto Y
    J Orthop Surg Res; 2014 Oct; 9():98. PubMed ID: 25312099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of CD146
    Li X; Guo W; Zha K; Jing X; Wang M; Zhang Y; Hao C; Gao S; Chen M; Yuan Z; Wang Z; Zhang X; Shen S; Li H; Zhang B; Xian H; Zhang Y; Sui X; Qin L; Peng J; Liu S; Lu S; Guo Q
    Theranostics; 2019; 9(17):5105-5121. PubMed ID: 31410204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteochondral regeneration of the femoral medial condyle by using a scaffold-free 3D construct of synovial membrane-derived mesenchymal stem cells in horses.
    Murata D; Ishikawa S; Sunaga T; Saito Y; Sogawa T; Nakayama K; Hobo S; Hatazoe T
    BMC Vet Res; 2022 Jan; 18(1):53. PubMed ID: 35065631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids Prevent Mesenchymal Stromal-Cell-Derived Chondrocyte Hypertrophy.
    Muttigi MS; Kim BJ; Choi B; Han I; Park H; Lee SH
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteochondral regeneration using scaffold-free constructs of adipose tissue-derived mesenchymal stem cells made by a bio three-dimensional printer with a needle-array in rabbits.
    Murata D; Kunitomi Y; Harada K; Tokunaga S; Takao S; Nakayama K
    Regen Ther; 2020 Dec; 15():77-89. PubMed ID: 33426205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrilin-3 codelivery with adipose-derived mesenchymal stem cells promotes articular cartilage regeneration in a rat osteochondral defect model.
    Muttigi MS; Kim BJ; Choi B; Yoshie A; Kumar H; Han I; Park H; Lee SH
    J Tissue Eng Regen Med; 2018 Mar; 12(3):667-675. PubMed ID: 28556569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation.
    Lin S; Lee WYW; Feng Q; Xu L; Wang B; Man GCW; Chen Y; Jiang X; Bian L; Cui L; Wei B; Li G
    Stem Cell Res Ther; 2017 Oct; 8(1):221. PubMed ID: 28974254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3.
    Liu Q; Wang J; Chen Y; Zhang Z; Saunders L; Schipani E; Chen Q; Ma PX
    Acta Biomater; 2018 Aug; 76():29-38. PubMed ID: 29940371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds.
    Chen J; Chen H; Li P; Diao H; Zhu S; Dong L; Wang R; Guo T; Zhao J; Zhang J
    Biomaterials; 2011 Jul; 32(21):4793-805. PubMed ID: 21489619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration.
    Xie X; Wang Y; Zhao C; Guo S; Liu S; Jia W; Tuan RS; Zhang C
    Biomaterials; 2012 Oct; 33(29):7008-18. PubMed ID: 22818985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration.
    Zhu Y; Kong L; Farhadi F; Xia W; Chang J; He Y; Li H
    Biomaterials; 2019 Feb; 192():149-158. PubMed ID: 30448699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteochondral Regeneration with a Scaffold-Free Three-Dimensional Construct of Adipose Tissue-Derived Mesenchymal Stromal Cells in Pigs.
    Murata D; Akieda S; Misumi K; Nakayama K
    Tissue Eng Regen Med; 2018 Feb; 15(1):101-113. PubMed ID: 30603538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration.
    Chen P; Zheng L; Wang Y; Tao M; Xie Z; Xia C; Gu C; Chen J; Qiu P; Mei S; Ning L; Shi Y; Fang C; Fan S; Lin X
    Theranostics; 2019; 9(9):2439-2459. PubMed ID: 31131046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques.
    Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W
    Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(l-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells.
    Zhang K; He S; Yan S; Li G; Zhang D; Cui L; Yin J
    J Mater Chem B; 2016 Apr; 4(15):2628-2645. PubMed ID: 32263287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model.
    Yang Q; Peng J; Lu SB; Guo QY; Zhao B; Zhang L; Wang AY; Xu WJ; Xia Q; Ma XL; Hu YC; Xu BS
    Chin Med J (Engl); 2011 Dec; 124(23):3930-8. PubMed ID: 22340321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.