These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 32438780)
21. Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Fushimi K; Hasegawa M; Ito T; Rockwell NC; Enomoto G; -Win NN; Lagarias JC; Ikeuchi M; Narikawa R Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15573-15580. PubMed ID: 32571944 [TBL] [Abstract][Full Text] [Related]
22. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Nagae T; Unno M; Koizumi T; Miyanoiri Y; Fujisawa T; Masui K; Kamo T; Wada K; Eki T; Ito Y; Hirose Y; Mishima M Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972439 [TBL] [Abstract][Full Text] [Related]
23. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. Nagano S J Plant Res; 2016 Mar; 129(2):123-35. PubMed ID: 26818948 [TBL] [Abstract][Full Text] [Related]
24. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Rockwell NC; Njuguna SL; Roberts L; Castillo E; Parson VL; Dwojak S; Lagarias JC; Spiller SC Biochemistry; 2008 Jul; 47(27):7304-16. PubMed ID: 18549244 [TBL] [Abstract][Full Text] [Related]
26. Two Cyanobacterial Photoreceptors Regulate Photosynthetic Light Harvesting by Sensing Teal, Green, Yellow, and Red Light. Wiltbank LB; Kehoe DM mBio; 2016 Feb; 7(1):e02130-15. PubMed ID: 26861023 [TBL] [Abstract][Full Text] [Related]
27. Primary photodynamics of the green/red-absorbing photoswitching regulator of the chromatic adaptation E domain from Fremyella diplosiphon. Gottlieb SM; Kim PW; Rockwell NC; Hirose Y; Ikeuchi M; Lagarias JC; Larsen DS Biochemistry; 2013 Nov; 52(46):8198-208. PubMed ID: 24147541 [TBL] [Abstract][Full Text] [Related]
28. Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria. Bussell AN; Kehoe DM Proc Natl Acad Sci U S A; 2013 Jul; 110(31):12834-9. PubMed ID: 23858449 [TBL] [Abstract][Full Text] [Related]
29. Evolution of cyanobacterial and plant phytochromes. Lamparter T FEBS Lett; 2004 Aug; 573(1-3):1-5. PubMed ID: 15327965 [TBL] [Abstract][Full Text] [Related]
30. Cyanobacteriochromes: A Rainbow of Photoreceptors. Rockwell NC; Lagarias JC Annu Rev Microbiol; 2024 Nov; 78(1):61-81. PubMed ID: 38848579 [TBL] [Abstract][Full Text] [Related]
31. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. Song C; Narikawa R; Ikeuchi M; Gärtner W; Matysik J J Phys Chem B; 2015 Jul; 119(30):9688-95. PubMed ID: 26115331 [TBL] [Abstract][Full Text] [Related]
32. Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis. Suzuki T; Yoshimura M; Arai M; Narikawa R J Mol Biol; 2024 Mar; 436(5):168451. PubMed ID: 38246412 [TBL] [Abstract][Full Text] [Related]
33. Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Rockwell NC; Martin SS; Lagarias JC Photochem Photobiol Sci; 2015 May; 14(5):929-41. PubMed ID: 25738434 [TBL] [Abstract][Full Text] [Related]
34. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. Lim S; Yu Q; Rockwell NC; Martin SS; Lagarias JC; Ames JB Biomol NMR Assign; 2016 Apr; 10(1):157-61. PubMed ID: 26537963 [TBL] [Abstract][Full Text] [Related]
35. Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2164g3' [corrected]. Lim S; Rockwell NC; Martin SS; Dallas JL; Lagarias JC; Ames JB Photochem Photobiol Sci; 2014 Jun; 13(6):951-62. PubMed ID: 24745038 [TBL] [Abstract][Full Text] [Related]
36. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling. Anders K; Daminelli-Widany G; Mroginski MA; von Stetten D; Essen LO J Biol Chem; 2013 Dec; 288(50):35714-25. PubMed ID: 24174528 [TBL] [Abstract][Full Text] [Related]
37. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2012 Feb; 51(7):1449-63. PubMed ID: 22279972 [TBL] [Abstract][Full Text] [Related]
38. Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin. Hoshino H; Miyake K; Fushimi K; Narikawa R Protein Sci; 2024 Aug; 33(8):e5132. PubMed ID: 39072823 [TBL] [Abstract][Full Text] [Related]
39. There and Back Again: Loss and Reacquisition of Two-Cys Photocycles in Cyanobacteriochromes. Rockwell NC; Martin SS; Lagarias JC Photochem Photobiol; 2017 May; 93(3):741-754. PubMed ID: 28055111 [TBL] [Abstract][Full Text] [Related]
40. Femtosecond photodynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. 1. Forward dynamics. Kim PW; Freer LH; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2012 Jan; 51(2):608-18. PubMed ID: 22148715 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]