These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32439614)

  • 1. A pH-sensitive fluorescent protein sensor to follow the pathway of calcium phosphate nanoparticles into cells.
    Kollenda S; Kopp M; Wens J; Koch J; Schulze N; Papadopoulos C; Pöhler R; Meyer H; Epple M
    Acta Biomater; 2020 Jul; 111():406-417. PubMed ID: 32439614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium phosphate nanoparticle-mediated transfection in 2D and 3D mono- and co-culture cell models.
    Sokolova V; Rojas-Sánchez L; Białas N; Schulze N; Epple M
    Acta Biomater; 2019 Jan; 84():391-401. PubMed ID: 30503560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells.
    Kopp M; Rotan O; Papadopoulos C; Schulze N; Meyer H; Epple M
    PLoS One; 2017; 12(6):e0178260. PubMed ID: 28586345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives.
    Khan MA; Wu VM; Ghosh S; Uskoković V
    J Colloid Interface Sci; 2016 Jun; 471():48-58. PubMed ID: 26971068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles.
    Sokolova VV; Radtke I; Heumann R; Epple M
    Biomaterials; 2006 Jun; 27(16):3147-53. PubMed ID: 16469375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of poly(allylamine)/siRNA nanoparticles, their intracellular fate and siRNA delivery.
    Di Silvio D; Martínez-Moro M; Salvador C; de Los Angeles Ramirez M; Caceres-Velez PR; Ortore MG; Dupin D; Andreozzi P; Moya SE
    J Colloid Interface Sci; 2019 Dec; 557():757-766. PubMed ID: 31569055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent.
    Chernousova S; Epple M
    Gene Ther; 2017 May; 24(5):282-289. PubMed ID: 28218744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein machineries defining pathways of nanocarrier exocytosis and transcytosis.
    Reinholz J; Diesler C; Schöttler S; Kokkinopoulou M; Ritz S; Landfester K; Mailänder V
    Acta Biomater; 2018 Apr; 71():432-443. PubMed ID: 29530823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking the pathway of calcium phosphate/DNA nanoparticles during cell transfection by incorporation of red-fluorescing tetramethylrhodamine isothiocyanate-bovine serum albumin into these nanoparticles.
    Sokolova V; Kovtun A; Heumann R; Epple M
    J Biol Inorg Chem; 2007 Feb; 12(2):174-9. PubMed ID: 17031704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A super-ecliptic, pHluorin-mKate2, tandem fluorescent protein-tagged human LC3 for the monitoring of mammalian autophagy.
    Tanida I; Ueno T; Uchiyama Y
    PLoS One; 2014; 9(10):e110600. PubMed ID: 25340751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic immunization against hepatitis B virus with calcium phosphate nanoparticles in vitro and in vivo.
    Rojas-Sánchez L; Zhang E; Sokolova V; Zhong M; Yan H; Lu M; Li Q; Yan H; Epple M
    Acta Biomater; 2020 Jul; 110():254-265. PubMed ID: 32344172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the pH Sensitivity of Poly(allylamine) Phosphate Supramolecular Nanocarriers for Intracellular siRNA Delivery.
    Andreozzi P; Diamanti E; Py-Daniel KR; Cáceres-Vélez PR; Martinelli C; Politakos N; Escobar A; Muzi-Falconi M; Azevedo R; Moya SE
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38242-38254. PubMed ID: 29039643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.
    Yang X; Walboomers XF; van den Dolder J; Yang F; Bian Z; Fan M; Jansen JA
    Tissue Eng Part A; 2008 Jan; 14(1):71-81. PubMed ID: 18333806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable expression of protective protein/cathepsin A-green fluorescent protein fusion genes in a fibroblastic cell line from a galactosialidosis patient. Model system for revealing the intracellular transport of normal and mutated lysosomal enzymes.
    Naganawa Y; Itoh K; Shimmoto M; Kamei S; Takiguchi K; Doi H; Sakuraba H
    Biochem J; 1999 Jun; 340 ( Pt 2)(Pt 2):467-74. PubMed ID: 10333491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency.
    Tang J; Chen JY; Liu J; Luo M; Wang YJ; Wei XW; Gao X; Wang BL; Liu YB; Yi T; Tong AP; Song XR; Xie YM; Zhao Y; Xiang M; Huang Y; Zheng Y
    Int J Pharm; 2012 Jul; 431(1-2):210-21. PubMed ID: 22561795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new tool for the transfection of corneal endothelial cells: calcium phosphate nanoparticles.
    Hu J; Kovtun A; Tomaszewski A; Singer BB; Seitz B; Epple M; Steuhl KP; Ergün S; Fuchsluger TA
    Acta Biomater; 2012 Mar; 8(3):1156-63. PubMed ID: 21982848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-color photon counting histogram analysis of mRFP1 and EGFP in living cells.
    Hillesheim LN; Chen Y; Müller JD
    Biophys J; 2006 Dec; 91(11):4273-84. PubMed ID: 16980358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo.
    van der Meer SB; Knuschke T; Frede A; Schulze N; Westendorf AM; Epple M
    Acta Biomater; 2017 Jul; 57():414-425. PubMed ID: 28552820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly(d,l-lactide-co-glycolide acid) nanoparticles for intracellular delivery.
    Dördelmann G; Kozlova D; Karczewski S; Lizio R; Knauer S; Epple M
    J Mater Chem B; 2014 Nov; 2(41):7250-7259. PubMed ID: 32261804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor microenvironment dual-responsive core-shell nanoparticles with hyaluronic acid-shield for efficient co-delivery of doxorubicin and plasmid DNA.
    Wang T; Yu X; Han L; Liu T; Liu Y; Zhang N
    Int J Nanomedicine; 2017; 12():4773-4788. PubMed ID: 28740384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.