BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32439787)

  • 1. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics.
    Liu L; Han J; Xu L; Zhou J; Zhao C; Ding S; Shi H; Xiao M; Ding L; Ma Z; Jin C; Zhang Z; Peng LM
    Science; 2020 May; 368(6493):850-856. PubMed ID: 32439787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays.
    Liu C; Cao Y; Wang B; Zhang Z; Lin Y; Xu L; Yang Y; Jin C; Peng LM; Zhang Z
    ACS Nano; 2022 Dec; 16(12):21482-21490. PubMed ID: 36416375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics.
    Jinkins KR; Foradori SM; Saraswat V; Jacobberger RM; Dwyer JH; Gopalan P; Berson A; Arnold MS
    Sci Adv; 2021 Sep; 7(37):eabh0640. PubMed ID: 34516885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz.
    Zhong D; Shi H; Ding L; Zhao C; Liu J; Zhou J; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42496-42503. PubMed ID: 31618003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the Performance of Aligned Carbon Nanotube-Based Transistors by Refreshing the Substrate Surface.
    Lin Y; Cao Y; Lu H; Liu C; Zhang Z; Jin C; Peng LM; Zhang Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10830-10837. PubMed ID: 36795423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.
    Brady GJ; Way AJ; Safron NS; Evensen HT; Gopalan P; Arnold MS
    Sci Adv; 2016 Sep; 2(9):e1601240. PubMed ID: 27617293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors.
    Si J; Zhong D; Xu H; Xiao M; Yu C; Zhang Z; Peng LM
    ACS Nano; 2018 Jan; 12(1):627-634. PubMed ID: 29303553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling carbon nanotube complementary transistors to 5-nm gate lengths.
    Qiu C; Zhang Z; Xiao M; Yang Y; Zhong D; Peng LM
    Science; 2017 Jan; 355(6322):271-276. PubMed ID: 28104886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics.
    Cao Q; Han SJ; Tulevski GS; Zhu Y; Lu DD; Haensch W
    Nat Nanotechnol; 2013 Mar; 8(3):180-6. PubMed ID: 23353673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube transistors scaled to a 40-nanometer footprint.
    Cao Q; Tersoff J; Farmer DB; Zhu Y; Han SJ
    Science; 2017 Jun; 356(6345):1369-1372. PubMed ID: 28663497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aligning Solution-Derived Carbon Nanotube Film with Full Surface Coverage for High-Performance Electronics Applications.
    Zhu MG; Si J; Zhang Z; Peng LM
    Adv Mater; 2018 Jun; 30(23):e1707068. PubMed ID: 29696705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.
    Yang Y; Ding L; Han J; Zhang Z; Peng LM
    ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor.
    Lee D; Lee BH; Yoon J; Ahn DC; Park JY; Hur J; Kim MS; Jeon SB; Kang MH; Kim K; Lim M; Choi SJ; Choi YK
    ACS Nano; 2016 Dec; 10(12):10894-10900. PubMed ID: 28024320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Chemistry-Based Separation of Semiconducting Single-Walled Carbon Nanotubes and Alignment of the Nanotube Array Network under Electric Field for Field-Effect Transistor Applications.
    Kumar THV; Rajendran J; Nagarajan RD; Jeevanandam G; Reshetilov AN; Sundramoorthy AK
    ACS Omega; 2021 Mar; 6(8):5146-5157. PubMed ID: 33681556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structurally Analogous Degradable Version of Fluorene-Bipyridine Copolymer with Exceptional Selectivity for Large-Diameter Semiconducting Carbon Nanotubes.
    Kanimozhi C; Brady GJ; Shea MJ; Huang P; Joo Y; Arnold MS; Gopalan P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40734-40742. PubMed ID: 29067812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cost-effective method for fabricating carbon nanotube network transistors by reusing a 99% semiconducting carbon nanotube solution.
    Jeon JW; Lee Y; Park GH; Kim DH; Kim DM; Kang MH; Choi SJ
    Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 35259734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removing Conjugated Polymers from Aligned Carbon Nanotube Arrays.
    Han J; Xu X; Zhang Z
    Small; 2024 Mar; ():e2309654. PubMed ID: 38530064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length?
    Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio.
    Brady GJ; Joo Y; Wu MY; Shea MJ; Gopalan P; Arnold MS
    ACS Nano; 2014 Nov; 8(11):11614-21. PubMed ID: 25383880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.