These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 32440001)
1. The use of spectrograms improves the classification of wheezes and crackles in an educational setting. Aviles-Solis JC; Storvoll I; Vanbelle S; Melbye H Sci Rep; 2020 May; 10(1):8461. PubMed ID: 32440001 [TBL] [Abstract][Full Text] [Related]
2. International perception of lung sounds: a comparison of classification across some European borders. Aviles-Solis JC; Vanbelle S; Halvorsen PA; Francis N; Cals JWL; Andreeva EA; Marques A; Piirilä P; Pasterkamp H; Melbye H BMJ Open Respir Res; 2017; 4(1):e000250. PubMed ID: 29435344 [TBL] [Abstract][Full Text] [Related]
3. Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD. Jácome C; Oliveira A; Marques A Clin Respir J; 2017 Sep; 11(5):612-620. PubMed ID: 26403859 [TBL] [Abstract][Full Text] [Related]
4. Prevalence and clinical associations of wheezes and crackles in the general population: the Tromsø study. Aviles-Solis JC; Jácome C; Davidsen A; Einarsen R; Vanbelle S; Pasterkamp H; Melbye H BMC Pulm Med; 2019 Sep; 19(1):173. PubMed ID: 31511003 [TBL] [Abstract][Full Text] [Related]
5. Wheezes, crackles and rhonchi: simplifying description of lung sounds increases the agreement on their classification: a study of 12 physicians' classification of lung sounds from video recordings. Melbye H; Garcia-Marcos L; Brand P; Everard M; Priftis K; Pasterkamp H BMJ Open Respir Res; 2016; 3(1):e000136. PubMed ID: 27158515 [TBL] [Abstract][Full Text] [Related]
6. Influence of observer preferences and auscultatory skill on the choice of terms to describe lung sounds: a survey of staff physicians, residents and medical students. Bohadana A; Azulai H; Jarjoui A; Kalak G; Izbicki G BMJ Open Respir Res; 2020 Mar; 7(1):. PubMed ID: 32220901 [TBL] [Abstract][Full Text] [Related]
7. Reliability of crackles in fibrotic interstitial lung disease: a prospective, longitudinal study. Sgalla G; Simonetti J; Di Bartolomeo A; Magrì T; Iovene B; Pasciuto G; Dell'Ariccia R; Varone F; Comes A; Leone PM; Piluso V; Perrotta A; Cicchetti G; Verdirosi D; Richeldi L Respir Res; 2024 Sep; 25(1):352. PubMed ID: 39342269 [TBL] [Abstract][Full Text] [Related]
9. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Kim Y; Hyon Y; Jung SS; Lee S; Yoo G; Chung C; Ha T Sci Rep; 2021 Aug; 11(1):17186. PubMed ID: 34433880 [TBL] [Abstract][Full Text] [Related]
10. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis. Gurung A; Scrafford CG; Tielsch JM; Levine OS; Checkley W Respir Med; 2011 Sep; 105(9):1396-403. PubMed ID: 21676606 [TBL] [Abstract][Full Text] [Related]
11. Computerized Respiratory Sounds Are a Reliable Marker in Subjects With COPD. Jácome C; Marques A Respir Care; 2015 Sep; 60(9):1264-75. PubMed ID: 25969514 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of Pulmonary Auscultation in Patients with 2019 Novel Coronavirus in China. Wang B; Liu Y; Wang Y; Yin W; Liu T; Liu D; Li D; Feng M; Zhang Y; Liang Z; Fu Z; Fu S; Li W; Xiong N; Wang G; Luo F Respiration; 2020; 99(9):755-763. PubMed ID: 33147584 [TBL] [Abstract][Full Text] [Related]
13. Digitally recorded and remotely classified lung auscultation compared with conventional stethoscope classifications among children aged 1-59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) case-control study. Park DE; Watson NL; Focht C; Feikin D; Hammitt LL; Brooks WA; Howie SRC; Kotloff KL; Levine OS; Madhi SA; Murdoch DR; O'Brien KL; Scott JAG; Thea DM; Amorninthapichet T; Awori J; Bunthi C; Ebruke B; Elhilali M; Higdon M; Hossain L; Jahan Y; Moore DP; Mulindwa J; Mwananyanda L; Naorat S; Prosperi C; Thamthitiwat S; Verwey C; Jablonski KA; Power MC; Young HA; Deloria Knoll M; McCollum ED BMJ Open Respir Res; 2022 May; 9(1):. PubMed ID: 35577452 [TBL] [Abstract][Full Text] [Related]
14. Instantaneous frequency based index to characterize respiratory crackles. Speranza CG; Moraes R Comput Biol Med; 2018 Nov; 102():21-29. PubMed ID: 30240835 [TBL] [Abstract][Full Text] [Related]
15. Artificial intelligence accuracy in detecting pathological breath sounds in children using digital stethoscopes. Kevat A; Kalirajah A; Roseby R Respir Res; 2020 Sep; 21(1):253. PubMed ID: 32993620 [TBL] [Abstract][Full Text] [Related]
16. [A new medical education using a lung sound auscultation simulator called "Mr. Lung"]. Yoshii C; Anzai T; Yatera K; Kawajiri T; Nakashima Y; Kido M J UOEH; 2002 Sep; 24(3):249-55. PubMed ID: 12235955 [TBL] [Abstract][Full Text] [Related]
17. Lung Auscultation Using the Smartphone-Feasibility Study in Real-World Clinical Practice. Ferreira-Cardoso H; Jácome C; Silva S; Amorim A; Redondo MT; Fontoura-Matias J; Vicente-Ferreira M; Vieira-Marques P; Valente J; Almeida R; Fonseca JA; Azevedo I Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300670 [TBL] [Abstract][Full Text] [Related]
18. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination. Grzywalski T; Piecuch M; Szajek M; Bręborowicz A; Hafke-Dys H; Kociński J; Pastusiak A; Belluzzo R Eur J Pediatr; 2019 Jun; 178(6):883-890. PubMed ID: 30927097 [TBL] [Abstract][Full Text] [Related]
19. Automated Lung Sound Classification Using a Hybrid CNN-LSTM Network and Focal Loss Function. Petmezas G; Cheimariotis GA; Stefanopoulos L; Rocha B; Paiva RP; Katsaggelos AK; Maglaveras N Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161977 [TBL] [Abstract][Full Text] [Related]
20. [Pulmonary auscultation in the era of evidence-based medicine]. Reichert S; Gass R; Brandt C; Andrès E Rev Mal Respir; 2008 Jun; 25(6):674-82. PubMed ID: 18772825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]