These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3244029)

  • 1. Adsorption characteristics of activated carbon and XAD4 resin for the removal of hazardous organic solvents.
    Noll KE; Sarlis JN
    JAPCA; 1988 Dec; 38(12):1512-7. PubMed ID: 3244029
    [No Abstract]   [Full Text] [Related]  

  • 2. In vitro adsorption of theophylline onto amberlite XAD4 in human plasma.
    Laurent D; Thomas J
    Farmaco Prat; 1987 Aug; 42(8):199-203. PubMed ID: 3622754
    [No Abstract]   [Full Text] [Related]  

  • 3. Hazardous dichloromethane recovery in combined temperature and vacuum pressure swing adsorption process.
    Ramalingam SG; Saussac J; Pré P; Giraudet S; Le Coq L; Le Cloirec P; Nicolas S; Baudouin O; Déchelotte S; Medevielle A
    J Hazard Mater; 2011 Dec; 198():95-102. PubMed ID: 22035692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.
    Ghatbandhe AS; Yenkie MK
    J Environ Sci Eng; 2008 Apr; 50(2):163-8. PubMed ID: 19295102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary feasibility study for the use of an adsorption/bio-regeneration system for molinate removal from effluents.
    Silva M; Fernandes A; Mendes A; Manaia CM; Nunes OC
    Water Res; 2004 Jun; 38(11):2677-84. PubMed ID: 15207598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring QSPR modeling for adsorption of hazardous synthetic organic chemicals (SOCs) by SWCNTs.
    Ghosh S; Ojha PK; Roy K
    Chemosphere; 2019 Aug; 228():545-555. PubMed ID: 31051358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: isotherm, kinetic, and thermodynamic analysis.
    Bilgili MS
    J Hazard Mater; 2006 Sep; 137(1):157-64. PubMed ID: 16487655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theophylline: a haemoperfusion modelisation.
    Laurent D; Guenzet J; Bourin M
    Methods Find Exp Clin Pharmacol; 1985 May; 7(5):253-8. PubMed ID: 4033302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of unconjugated bilirubin by macroreticular resin in hemoperfusion.
    Chen CZ; Wang HM; Tong MR; Yu YT; Song JC; Qian SC; Chang HZ
    Int J Artif Organs; 1986 Sep; 9(5):323-6. PubMed ID: 3781663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-treatment of the permeate of a submerged anaerobic membrane bioreactor (SAMBR) treating landfill leachate.
    Trzcinski AP; Ofoegbu N; Stuckey DC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(13):1539-48. PubMed ID: 21992219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated carbon from leather shaving wastes and its application in removal of toxic materials.
    Kantarli IC; Yanik J
    J Hazard Mater; 2010 Jul; 179(1-3):348-56. PubMed ID: 20382474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the support base on the sorption of Co(II) with mixed solvents.
    Someda HH
    J Hazard Mater; 2007 Oct; 149(1):189-98. PubMed ID: 17482353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilized-cell-augmented activated sludge process for treating wastewater containing hazardous compounds.
    Jittawattanarat R; Kostarelos K; Khan E
    Water Environ Res; 2007 May; 79(5):461-71. PubMed ID: 17571835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of hazardous dye congored from waste material.
    Jain R; Sikarwar S
    J Hazard Mater; 2008 Apr; 152(3):942-8. PubMed ID: 17825987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using chemical desorption of PAHs from sediment to model biodegradation during bioavailability assessment.
    Spasojević JM; Maletić SP; Rončević SD; Radnović DV; Cučak DI; Tričković JS; Dalmacija BD
    J Hazard Mater; 2015; 283():60-9. PubMed ID: 25261761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional metal sulfides and selenides for the removal of hazardous dyes from Water.
    Shamraiz U; Hussain RA; Badshah A; Raza B; Saba S
    J Photochem Photobiol B; 2016 Jun; 159():33-41. PubMed ID: 27010842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the mutagenic activity of XAD4 and blue rayon extracts of surface water and related drinking water samples.
    Kummrow F; Rech CM; Coimbrão CA; Roubicek DA; Umbuzeiro Gde A
    Mutat Res; 2003 Nov; 541(1-2):103-13. PubMed ID: 14568299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced mercury ion adsorption by amine-modified activated carbon.
    Zhu J; Yang J; Deng B
    J Hazard Mater; 2009 Jul; 166(2-3):866-72. PubMed ID: 19135298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of aging on the dynamic adsorption of hazardous organic vapors on impregnated activated carbon.
    Amitay-Rosen T; Leibman A; Nir I; Zaltsman A; Kaplan D
    J Occup Environ Hyg; 2015; 12(2):130-7. PubMed ID: 25192468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different physico-chemical methods for the removal of toxicants from landfill leachate.
    Cotman M; Gotvajn AZ
    J Hazard Mater; 2010 Jun; 178(1-3):298-305. PubMed ID: 20133059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.