BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 32440488)

  • 1. Core-Shell Structured NiFeSn@NiFe (Oxy)Hydroxide Nanospheres from an Electrochemical Strategy for Electrocatalytic Oxygen Evolution Reaction.
    Chen M; Lu S; Fu XZ; Luo JL
    Adv Sci (Weinh); 2020 May; 7(10):1903777. PubMed ID: 32440488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The
    Dai W; Hu F; Yang X; Wu B; Zhao C; Zhang Y; Huang S
    Dalton Trans; 2023 Dec; 52(47):18000-18009. PubMed ID: 37982693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Reconstruction of NiFe/NiFeOOH Superparamagnetic Core/Catalytic Shell Heterostructure for Magnetic Heating Enhancement of Oxygen Evolution Reaction.
    Peng D; Hu C; Luo X; Huang J; Ding Y; Zhou W; Zhou H; Yang Y; Yu T; Lei W; Yuan C
    Small; 2023 Jan; 19(3):e2205665. PubMed ID: 36404111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Derived Ni
    Wang AL; Dong YT; Li M; Liang C; Li GR
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34954-34960. PubMed ID: 28926229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction.
    Ni Y; Yao L; Wang Y; Liu B; Cao M; Hu C
    Nanoscale; 2017 Aug; 9(32):11596-11604. PubMed ID: 28770917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitating Active Species Generation by Amorphous NiFe-B
    Zhang L; Zhang R; Ge R; Ren X; Hao S; Xie F; Qu F; Liu Z; Du G; Asiri AM; Zheng B; Sun X
    Chemistry; 2017 Aug; 23(48):11499-11503. PubMed ID: 28699228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction.
    Lee E; Park AH; Park HU; Kwon YU
    Ultrason Sonochem; 2018 Jan; 40(Pt A):552-557. PubMed ID: 28946457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen vacancy-rich amorphous porous NiFe(OH)
    Wang S; Ge X; Lv C; Hu C; Guan H; Wu J; Wang Z; Yang X; Shi Y; Song J; Zhang Z; Watanabe A; Cai J
    Nanoscale; 2020 May; 12(17):9557-9568. PubMed ID: 32315004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-Coated Tungsten Oxide Nanospheres Triggering Flexible Electron Transfer for Efficient Electrocatalytic Oxidation of Water and Glucose.
    Peng X; Nie X; Zhang L; Liang T; Liu Y; Liu P; Men YL; Niu L; Zhou J; Cui D; Pan YX
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):56943-56953. PubMed ID: 33307676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cu
    Qi H; Zhang P; Wang H; Cui Y; Liu X; She X; Wen Y; Zhan T
    J Colloid Interface Sci; 2021 Oct; 599():370-380. PubMed ID: 33962198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical oxidation of boron-doped nickel-iron layered double hydroxide for facile charge transfer in oxygen evolution electrocatalysts.
    Ahn IK; Lee SY; Kim HG; Lee GB; Lee JH; Kim M; Joo YC
    RSC Adv; 2021 Feb; 11(14):8198-8206. PubMed ID: 35423321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-supported CoMoO
    Tian H; Zhang K; Feng X; Chen J; Lou Y
    Dalton Trans; 2022 Sep; 51(36):13762-13770. PubMed ID: 36018311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating oxygen evolution electrocatalysis of two-dimensional NiFe layered double hydroxide nanosheets via space-confined amorphization.
    Jiao S; Yao Z; Li M; Mu C; Liang H; Zeng YJ; Huang H
    Nanoscale; 2019 Oct; 11(40):18894-18899. PubMed ID: 31596308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous-Amorphous Coupling Enhancing the Oxygen Evolution Reaction Activity and Stability of the NiFe-Based Catalyst.
    Gao H; Sun W; Tian X; Liao J; Ma C; Hu Y; Du G; Yang J; Ge C
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15205-15213. PubMed ID: 35343674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step electrodeposition of V-doped NiFe nanosheets for low-overpotential alkaline oxygen evolution.
    Kong Q; Wang J; Liu Z; Wu S; Tong X; Zong N; Huang B; Xu R; Yang L
    Dalton Trans; 2023 Nov; 52(45):16963-16973. PubMed ID: 37930358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical NiFe Layered Double Hydroxide Hollow Microspheres with Highly-Efficient Behavior toward Oxygen Evolution Reaction.
    Zhang C; Shao M; Zhou L; Li Z; Xiao K; Wei M
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33697-33703. PubMed ID: 27960375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triple hierarchy and double synergies of NiFe/Co
    Zhan C; Liu Z; Zhou Y; Guo M; Zhang X; Tu J; Ding L; Cao Y
    Nanoscale; 2019 Feb; 11(7):3378-3385. PubMed ID: 30724936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn-Air Batteries: The Effect of Surface S Residues.
    Wang T; Nam G; Jin Y; Wang X; Ren P; Kim MG; Liang J; Wen X; Jang H; Han J; Huang Y; Li Q; Cho J
    Adv Mater; 2018 Jul; 30(27):e1800757. PubMed ID: 29782683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterostructure of core-shell IrCo@IrCoO
    Ma X; Deng L; Lu M; He Y; Zou S; Xin Y
    Nanotechnology; 2021 Dec; 33(12):. PubMed ID: 34874299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrooxidation-enabled electroactive high-valence ferritic species in NiFe layered double hydroxide arrays as efficient oxygen evolution catalysts.
    Wang Y; Zhang X; Huang L; Guo Y; Yuan X; Hou H; Wu J; Lu C; Zhang Y
    J Colloid Interface Sci; 2021 Oct; 599():168-177. PubMed ID: 33933791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.