These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3244069)

  • 1. Electric field distributions of waveguide arrays for local tumor hyperthermia.
    Becerra C; Rebollar J
    J Microw Power Electromagn Energy; 1988; 23(4):247-54. PubMed ID: 3244069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR; Rossetto F; Leoncini M; Gentilli GB
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and optimization of waveguide multiapplicator hyperthermia systems.
    Boag A; Leviatan Y; Boag A
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):946-52. PubMed ID: 8288286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Sigma 60 applicator for regional hyperthermia in terms of scattering parameters.
    Leybovich LB; Myerson RJ; Emami B; Straube WL
    Int J Hyperthermia; 1991; 7(6):917-35. PubMed ID: 1806645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization by a matrix of light-emitting diodes of interference effects from a radiative four-applicator hyperthermia system.
    Schneider C; Van Dijk JD
    Int J Hyperthermia; 1991; 7(2):355-66. PubMed ID: 1880460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorbed power distributions from single or multiple waveguide applicators during microwave hyperthermia.
    Antolini R; Cerri G; Cristoforetti L; De Leo R
    Phys Med Biol; 1986 Sep; 31(9):1005-19. PubMed ID: 3774873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical electric field distributions produced by three types of regional hyperthermia devices in a three-dimensional homogeneous model of man.
    Paulsen KD; Strohbehn JW; Lynch DR
    IEEE Trans Biomed Eng; 1988 Jan; 35(1):36-45. PubMed ID: 3338810
    [No Abstract]   [Full Text] [Related]  

  • 8. Multi-applicator hyperthermia system description using scattering parameters.
    Raskmark P; Larsen T; Hornsleth SN
    Int J Hyperthermia; 1994; 10(1):143-51. PubMed ID: 8144985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quasi-static model for the ring capacitor applicator.
    SowiƄski MJ; van Putten MH; van den Berg PM; van Rhoon GC
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):995-1003. PubMed ID: 2793200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculated power absorption patterns for hyperthermia applicators consisting of electric dipole arrays.
    Tsai CT; Durney CH; Christensen DA
    J Microw Power; 1984 Mar; 19(1):1-13. PubMed ID: 6564154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.
    Underwood HR; Peterson AF; Magin RL
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):146-53. PubMed ID: 1612617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current sheet applicator arrays for superficial hyperthermia of chestwall lesions.
    Gopal MK; Hand JW; Lumori ML; Alkhairi S; Paulsen KD; Cetas TC
    Int J Hyperthermia; 1992; 8(2):227-40. PubMed ID: 1573312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a clinical deep-body hyperthermia system based on the 'coaxial TEM' applicator.
    De Leeuw AA; Lagendijk JJ
    Int J Hyperthermia; 1987; 3(5):413-21. PubMed ID: 3681041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperthermia applicator based on a reentrant cavity for localized head and neck tumors.
    Ishihara Y; Gotanda Y; Wadamori N; Matsuda J
    Rev Sci Instrum; 2007 Feb; 78(2):024301. PubMed ID: 17578127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the deposited power distribution inside a layered lossy medium irradiated by a coupled system of concentrically placed waveguide applicators.
    Nikita KS; Maratos NG; Uzunoglu NK
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):909-20. PubMed ID: 9644900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and experimental comparison of three types of electromagnetic hyperthermia applicator.
    Johnson RH; Preece AW; Green JL
    Phys Med Biol; 1990 Jun; 35(6):761-79. PubMed ID: 2367546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two 27 MHz Simple Inductive Loops, as Hyperthermia Treatment Applicators: Theoretical Analysis and Development.
    Kouloulias V; Karanasiou I; Koutsoupidou M; Matsopoulos G; Kouvaris J; Uzunoglu N
    Comput Math Methods Med; 2015; 2015():751035. PubMed ID: 26649070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RF field penetration from electrically small hyperthermia applicators.
    Preece AW; Murfin JL; Johnson RH
    Phys Med Biol; 1987 Dec; 32(12):1595-601. PubMed ID: 3432364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method.
    Shaw JA; Durney CH; Christensen DA
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 433 MHz Lucite cone waveguide applicator for superficial hyperthermia.
    van Rhoon GC; Rietveld PJ; van der Zee J
    Int J Hyperthermia; 1998; 14(1):13-27. PubMed ID: 9483443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.