These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32440871)

  • 1. Removal of harmful algal blooms in freshwater by buoyant-bead flotation using chitosan-coated fly ash cenospheres.
    Zou X; Xu K; Xue Y; Qu Y; Li Y
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29239-29247. PubMed ID: 32440871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flocculation of cyanobacterial cells using coal fly ash modified chitosan.
    Yuan Y; Zhang H; Pan G
    Water Res; 2016 Jun; 97():11-8. PubMed ID: 26723521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand.
    Li L; Pan G
    Environ Sci Technol; 2013 May; 47(9):4555-62. PubMed ID: 23611410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphoteric starch-based bicomponent modified soil for mitigation of harmful algal blooms (HABs) with broad salinity tolerance: Flocculation, algal regrowth, and ecological safety.
    Jin X; Bi L; Lyu T; Chen J; Zhang H; Pan G
    Water Res; 2019 Nov; 165():115005. PubMed ID: 31450218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microalgae harvesting by flotation using natural saponin and chitosan.
    Kurniawati HA; Ismadji S; Liu JC
    Bioresour Technol; 2014 Aug; 166():429-34. PubMed ID: 24935003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using flocculation and subsequent biomanipulation to control microcystis blooms: A laboratory study.
    Zhou X; He Y; Li H; Wei Y; Zhao L; Yang G; Chen X
    Harmful Algae; 2020 Nov; 99():101917. PubMed ID: 33218442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The novel chitosan-amphoteric starch dual flocculants for enhanced removal of Microcystis aeruginosa and algal organic matter.
    Cui J; Niu X; Zhang D; Ma J; Zhu X; Zheng X; Lin Z; Fu M
    Carbohydr Polym; 2023 Mar; 304():120474. PubMed ID: 36641191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flocculation of Chlorella vulgaris-induced algal blooms: critical conditions and mechanisms.
    Zhang P; Zhu S; Xiong C; Yan B; Wang Z; Li K; Olivier I; Wang H
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):78809-78820. PubMed ID: 35699884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step removal of harmful algal blooms by dual-functional flocculant based on self-branched chitosan integrated with flotation function.
    Lin MZ; Li WX; Hu T; Bu H; Li ZL; Wu T; Wu XX; Sun C; Li Y; Jiang GB
    Carbohydr Polym; 2021 May; 259():117710. PubMed ID: 33673989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of algal blooms from freshwater by the coagulation-magnetic separation method.
    Liu D; Wang P; Wei G; Dong W; Hui F
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):60-5. PubMed ID: 22767355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of a toxic cyanobacterial bloom species, Microcystis aeruginosa, using the peptide HPA3NT3-A2.
    Han SI; Kim S; Choi KY; Lee C; Park Y; Choi YE
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):32255-32265. PubMed ID: 31598929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harmful algae blooms removal from fresh water with modified vermiculite.
    Miao C; Tang Y; Zhang H; Wu Z; Wang X
    Environ Technol; 2014; 35(1-4):340-6. PubMed ID: 24600873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Buoy-bead flotation harvesting of the microalgae Chlorella vulgaris using surface-layered polymeric microspheres: A novel approach.
    Xu K; Zou X; Wen H; Xue Y; Zhao S; Li Y
    Bioresour Technol; 2018 Nov; 267():341-346. PubMed ID: 30029180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimized CaO
    Chen Z; Chen M; Koh KY; Neo W; Ong CN; Chen JP
    Sci Total Environ; 2022 Feb; 806(Pt 1):150382. PubMed ID: 34571230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An algal removal using a combination of flocculation and flotation processes.
    Phoochinda W; White DA; Briscoe BJ
    Environ Technol; 2004 Dec; 25(12):1385-95. PubMed ID: 15691199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae harvesting using colloidal gas aphrons generated from single and mixed surfactants.
    Pal P; Corpuz AG; Hasan SW; Sillanpää M; Banat F
    Chemosphere; 2021 Jun; 273():128568. PubMed ID: 33069437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The growth suppression effects of UV-C irradiation on Microcystis aeruginosa and Chlorella vulgaris under solo-culture and co-culture conditions in reclaimed water.
    Li S; Dao GH; Tao Y; Zhou J; Jiang HS; Xue YM; Yu WW; Yong XL; Hu HY
    Sci Total Environ; 2020 Apr; 713():136374. PubMed ID: 31955073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Biophysical Properties of Microalgal Cell Surfaces Govern Their Interactions with an Amphiphilic Chitosan Derivative Used for Flocculation and Flotation.
    Demir-Yilmaz I; Pappa M; Lama S; Guiraud P; Vandamme D; Formosa-Dague C
    ACS Appl Bio Mater; 2024 Jun; 7(6):4017-4028. PubMed ID: 38788153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms.
    Zhang D; Ye Q; Zhang F; Shao X; Fan Y; Zhu X; Li Y; Yao L; Tian Y; Zheng T; Xu H
    Chemosphere; 2019 Mar; 218():138-146. PubMed ID: 30471494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism.
    Pan M; Lyu T; Zhan L; Matamoros V; Angelidaki I; Cooper M; Pan G
    Water Res; 2021 Feb; 190():116735. PubMed ID: 33352526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.