BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32441008)

  • 1. Hydrogel Production Platform with Dynamic Movement Using Photo-Crosslinkable/Temperature Reversible Chitosan Polymer and Stereolithography 4D Printing Technology.
    Seo JW; Shin SR; Park YJ; Bae H
    Tissue Eng Regen Med; 2020 Aug; 17(4):423-431. PubMed ID: 32441008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triple-conjugated photo-/temperature-/pH-sensitive chitosan with an intelligent response for bioengineering applications.
    Che QT; Charoensri K; Seo JW; Nguyen MH; Jang G; Bae H; Park HJ
    Carbohydr Polym; 2022 Dec; 298():120066. PubMed ID: 36241265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography.
    Morris VB; Nimbalkar S; Younesi M; McClellan P; Akkus O
    Ann Biomed Eng; 2017 Jan; 45(1):286-296. PubMed ID: 27164837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable hydrogel derived from chitosan with tunable mechanical properties via hybrid-crosslinking system.
    Seo JW; Shin SR; Lee MY; Cha JM; Min KH; Lee SC; Shin SY; Bae H
    Carbohydr Polym; 2021 Jan; 251():117036. PubMed ID: 33142594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study.
    Karakurt I; Aydoğdu A; Çıkrıkcı S; Orozco J; Lin L
    Int J Pharm; 2020 Jun; 584():119428. PubMed ID: 32445906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D Printing of Body Temperature-Responsive Hydrogels Based on Poly(acrylic acid) with Shape-Memory and Self-Healing Abilities.
    Abdullah T; Okay O
    ACS Appl Bio Mater; 2023 Feb; 6(2):703-711. PubMed ID: 36700540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography.
    Elomaa L; Keshi E; Sauer IM; Weinhart M
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Development of New Material for 4D Printing and the Material Properties Comparison between the Conventional and Stereolithography Polymerised NVCL Hydrogels.
    Zhuo S; Geever LM; Halligan E; Tie BSH; Breheny C
    J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36547522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications.
    Kalogeropoulou M; Díaz-Payno PJ; Mirzaali MJ; van Osch GJVM; Fratila-Apachitei LE; Zadpoor AA
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38224616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photopolymerizable chitosan hydrogels with improved strength and 3D printability.
    Zhang M; Wan T; Fan P; Shi K; Chen X; Yang H; Liu X; Xu W; Zhou Y
    Int J Biol Macromol; 2021 Dec; 193(Pt A):109-116. PubMed ID: 34699888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation.
    Liu X; Song S; Huang J; Fu H; Ning X; He Y; Zhang Z
    J Mater Chem B; 2020 Jul; 8(28):6115-6127. PubMed ID: 32558871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of photocrosslinkable resin components and 3D printing process parameters.
    Guerra AJ; Lammel-Lindemann J; Katko A; Kleinfehn A; Rodriguez CA; Catalani LH; Becker ML; Ciurana J; Dean D
    Acta Biomater; 2019 Oct; 97():154-161. PubMed ID: 31352105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA).
    Kafle A; Luis E; Silwal R; Pan HM; Shrestha PL; Bastola AK
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urethane dimethacrylate-based photopolymerizable resins for stereolithography 3D printing: A physicochemical characterisation and biocompatibility evaluation.
    Pitzanti G; Mohylyuk V; Corduas F; Byrne NM; Coulter JA; Lamprou DA
    Drug Deliv Transl Res; 2024 Jan; 14(1):177-190. PubMed ID: 37454029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System.
    Zhang B; Zhang W; Zhang Z; Zhang YF; Hingorani H; Liu Z; Liu J; Ge Q
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10328-10336. PubMed ID: 30785262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing.
    Liu Y; Wong CW; Chang SW; Hsu SH
    Acta Biomater; 2021 Mar; 122():211-219. PubMed ID: 33444794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereolithography 3D printing technology in pharmaceuticals: a review.
    Deshmane S; Kendre P; Mahajan H; Jain S
    Drug Dev Ind Pharm; 2021 Sep; 47(9):1362-1372. PubMed ID: 34663145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.