BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32441137)

  • 21. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies.
    Prexler SM; Frassek M; Moerschbacher BM; Dirks-Hofmeister ME
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8757-8761. PubMed ID: 31037807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.
    Olivares C; Solano F
    Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center.
    García-Borrón JC; Solano F
    Pigment Cell Res; 2002 Jun; 15(3):162-73. PubMed ID: 12028580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conversion of trypsin to a copper enzyme: tyrosinase/catechol oxidase by chemical modification.
    Okutucu B; Zeytunluoglu A; Zihnioglu F
    Prep Biochem Biotechnol; 2010; 40(1):88-96. PubMed ID: 20024799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Considerations Regarding Activity Determinants of Fungal Polyphenol Oxidases Based on Mutational and Structural Studies.
    Nikolaivits E; Valmas A; Dedes G; Topakas E; Dimarogona M
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyphenol oxidases in plants and fungi: going places? A review.
    Mayer AM
    Phytochemistry; 2006 Nov; 67(21):2318-31. PubMed ID: 16973188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control mechanisms of the prophenoloxidase cascade.
    Sugumaran M
    Adv Exp Med Biol; 2001; 484():289-98. PubMed ID: 11418994
    [No Abstract]   [Full Text] [Related]  

  • 28. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Sci Rep; 2017 Aug; 7(1):8860. PubMed ID: 28821733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.
    Ismaya WT; Rozeboom HJ; Weijn A; Mes JJ; Fusetti F; Wichers HJ; Dijkstra BW
    Biochemistry; 2011 Jun; 50(24):5477-86. PubMed ID: 21598903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of the amino acid position controlling the different enzymatic activities in walnut tyrosinase isoenzymes (jrPPO1 and jrPPO2).
    Panis F; Rompel A
    Sci Rep; 2020 Jul; 10(1):10813. PubMed ID: 32616720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tyrosinase inhibitory activity of cucumber compounds: enzymes responsible for browning in cucumber.
    Gandía-Herrero F; Jiménez M; Cabanes J; García-Carmona F; Escribano J
    J Agric Food Chem; 2003 Dec; 51(26):7764-9. PubMed ID: 14664542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase.
    Kipouros I; Solomon EI
    FEBS Lett; 2023 Jan; 597(1):65-78. PubMed ID: 36178078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
    Ramsden CA; Riley PA
    Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 4-Hydroxyanisole: the most suitable monophenolic substrate for determining spectrophotometrically the monophenolase activity of polyphenol oxidase from fruits and vegetables.
    Espín JC; Tudela J; García-Cánovas F
    Anal Biochem; 1998 May; 259(1):118-26. PubMed ID: 9606152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substrate share in the suicide inactivation of mushroom tyrosinase.
    Haghbeen K; Saboury AA; Karbassi F
    Biochim Biophys Acta; 2004 Nov; 1675(1-3):139-46. PubMed ID: 15535977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional interaction of diphenols with polyphenol oxidase. Molecular determinants of substrate/inhibitor specificity.
    Kanade SR; Suhas VL; Chandra N; Gowda LR
    FEBS J; 2007 Aug; 274(16):4177-87. PubMed ID: 17651437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydroxyphenyl thiosemicarbazones as inhibitors of mushroom tyrosinase and antibrowning agents.
    Carcelli M; Rogolino D; Bartoli J; Pala N; Compari C; Ronda N; Bacciottini F; Incerti M; Fisicaro E
    Food Chem; 2020 Jan; 303():125310. PubMed ID: 31473456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The inhibitory effect of pyrogallol on tyrosinase activity and structure: Integration study of inhibition kinetics with molecular dynamics simulation.
    Xiong SL; Lim GT; Yin SJ; Lee J; Si YX; Yang JM; Park YD; Qian GY
    Int J Biol Macromol; 2019 Jan; 121():463-471. PubMed ID: 30326223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of tyrosinase- and polyphenol esterase-catalyzed end products using selected phenolic substrates.
    Madani W; Kermasha S; Versari A
    J Agric Food Chem; 1999 Jun; 47(6):2486-90. PubMed ID: 10794654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-function correlations in tyrosinases.
    Kanteev M; Goldfeder M; Fishman A
    Protein Sci; 2015 Sep; 24(9):1360-9. PubMed ID: 26104241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.