These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3244130)

  • 41. A new microcomputer-based method for measuring walking phonotaxis in field crickets (Gryllidae).
    Doherty JA; Pires A
    J Exp Biol; 1987 Jul; 130():425-32. PubMed ID: 3625123
    [No Abstract]   [Full Text] [Related]  

  • 42. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial acuity of ultrasound hearing in flying crickets.
    Wyttenbach RA; Hoy RR
    J Exp Biol; 1997 Jul; 200(Pt 14):1999-2006. PubMed ID: 9246783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats.
    Fullard JH; Ratcliffe JM; Guignion C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jul; 191(7):605-18. PubMed ID: 15886992
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reorganization of sensory regulation of locust flight after partial deafferentation.
    Büschges A; Ramirez JM; Pearson KG
    J Neurobiol; 1992 Feb; 23(1):31-43. PubMed ID: 1564454
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus).
    Faulkes Z; Pollack GS
    J Neurophysiol; 2000 Sep; 84(3):1247-55. PubMed ID: 10979999
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Shrinking wings for ultrasonic pitch production: hyperintense ultra-short-wavelength calls in a new genus of neotropical katydids (Orthoptera: Tettigoniidae).
    Sarria-S FA; Morris GK; Windmill JF; Jackson J; Montealegre-Z F
    PLoS One; 2014; 9(6):e98708. PubMed ID: 24901234
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets.
    Zuk M; Rotenberry JT; Tinghitella RM
    Biol Lett; 2006 Dec; 2(4):521-4. PubMed ID: 17148278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Motor program initiation and selection in crickets, with special reference to swimming and flying behavior.
    Matsuura T; Kanou M; Yamaguchi T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jan; 187(12):987-95. PubMed ID: 11913817
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The combined effect of two mutations that alter serially homologous color pattern elements on the fore and hindwings of a butterfly.
    Monteiro A; Chen B; Scott LC; Vedder L; Prijs HJ; Belicha-Villanueva A; Brakefield PM
    BMC Genet; 2007 May; 8():22. PubMed ID: 17498305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional morphology of tegmina-based stridulation in the relict species
    Chivers BD; Béthoux O; Sarria-S FA; Jonsson T; Mason AC; Montealegre-Z F
    J Exp Biol; 2017 Mar; 220(Pt 6):1112-1121. PubMed ID: 28082619
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Spectrum of the calling songs, phonotaxis and the auditory system in the cricket Gryllus bimaculatus].
    Popov AV; Shuvalov VF; Markovich AM
    Zh Evol Biokhim Fiziol; 1975; 11(5):453-60. PubMed ID: 1217325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-tone suppression in the cricket, Eunemobius carolinus (Gryllidae, Nemobiinae).
    Farris HE; Hoy RR
    J Acoust Soc Am; 2002 Mar; 111(3):1475-85. PubMed ID: 11931325
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Free-flight phonotaxis in a parasitoid fly: behavioural thresholds, relative attraction and susceptibility to noise.
    Ramsauer N; Robert D
    Naturwissenschaften; 2000 Jul; 87(7):315-9. PubMed ID: 11013880
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight.
    Wang ZJ; Russell D
    Phys Rev Lett; 2007 Oct; 99(14):148101. PubMed ID: 17930724
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic flight stability in the desert locust Schistocerca gregaria.
    Taylor GK; Thomas AL
    J Exp Biol; 2003 Aug; 206(Pt 16):2803-29. PubMed ID: 12847126
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.
    Ros IG; Badger MA; Pierson AN; Bassman LC; Biewener AA
    J Exp Biol; 2015 Feb; 218(Pt 3):480-90. PubMed ID: 25452503
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sexual selection and population divergence II. Divergence in different sexual traits and signal modalities in field crickets (Teleogryllus oceanicus).
    Pascoal S; Mendrok M; Wilson AJ; Hunt J; Bailey NW
    Evolution; 2017 Jun; 71(6):1614-1626. PubMed ID: 28369840
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight.
    Zhang J; Lu XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):017302. PubMed ID: 19658843
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
    Nudds RL; Taylor GK; Thomas AL
    Proc Biol Sci; 2004 Oct; 271(1552):2071-6. PubMed ID: 15451698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.