These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32441468)

  • 1. Effect of surface characteristics on the antibacterial properties of titanium dioxide nanotubes produced in aqueous electrolytes with carboxymethyl cellulose.
    Aguirre Ocampo R; Echeverry-Rendón M; DeAlba-Montero I; Robledo S; Ruiz F; Echeverría Echeverría F
    J Biomed Mater Res A; 2021 Jan; 109(1):104-121. PubMed ID: 32441468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa.
    Šístková J; Fialová T; Svoboda E; Varmužová K; Uher M; Číhalová K; Přibyl J; Dlouhý A; Pávková Goldbergová M
    Sci Rep; 2024 Jul; 14(1):17303. PubMed ID: 39068252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects on the antibacterial activity of TiO(2) nanotubes with different diameters from ultraviolet ray-irradiation].
    Yang HL; Mei SL; Huang P; Zhang YM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Dec; 47(12):748-52. PubMed ID: 23328102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of nanotubular TiO
    Aguirre R; Echeverry-Rendón M; Quintero D; Castaño JG; Harmsen MC; Robledo S; Echeverría E F
    J Biomed Mater Res A; 2018 May; 106(5):1341-1354. PubMed ID: 29316200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial activity of standard and N-doped titanium dioxide-coated endotracheal tubes: an in vitro study.
    Caratto V; Ball L; Sanguineti E; Insorsi A; Firpo I; Alberti S; Ferretti M; Pelosi P
    Rev Bras Ter Intensiva; 2017; 29(1):55-62. PubMed ID: 28444073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diameter of titanium nanotubes influences anti-bacterial efficacy.
    Ercan B; Taylor E; Alpaslan E; Webster TJ
    Nanotechnology; 2011 Jul; 22(29):295102. PubMed ID: 21673387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial adhesion and inactivation on Ag decorated TiO
    Hajjaji A; Elabidi M; Trabelsi K; Assadi AA; Bessais B; Rtimi S
    Colloids Surf B Biointerfaces; 2018 Oct; 170():92-98. PubMed ID: 29894837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring Additively Manufactured Titanium Implants for Short-Time Pediatric Implantations with Enhanced Bactericidal Activity.
    Maher S; Linklater D; Rastin H; Le Yap P; Ivanova EP; Losic D
    ChemMedChem; 2022 Jan; 17(2):e202100580. PubMed ID: 34606176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalytic activity and antibacterial efficacy of UVA-treated titanium oxides.
    Johnson HA; Williamson RS; Marquart M; Bumgardner JD; Janorkar AV; Roach MD
    J Biomater Appl; 2020; 35(4-5):500-514. PubMed ID: 32686588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced hemocompatibility and antibacterial activity on titania nanotubes with tanfloc/heparin polyelectrolyte multilayers.
    Sabino RM; Kauk K; Madruga LYC; Kipper MJ; Martins AF; Popat KC
    J Biomed Mater Res A; 2020 Apr; 108(4):992-1005. PubMed ID: 31909867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TiO
    Kunrath MF; Farina G; Sturmer LBS; Teixeira ER
    Dent Mater; 2024 Jun; 40(6):907-920. PubMed ID: 38714394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Antibacterial Performance and Biocompatibility of Pure Titanium by a Two-Step Electrochemical Surface Coating.
    Yu S; Guo D; Han J; Sun L; Zhu H; Yu Z; Dargusch M; Wang G
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44433-44446. PubMed ID: 32914960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium.
    Hu H; Zhang W; Qiao Y; Jiang X; Liu X; Ding C
    Acta Biomater; 2012 Feb; 8(2):904-15. PubMed ID: 22023752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial and Biological Behavior of TiO2 Nanotubes Produced by Anodizing Technique.
    Ocampo RA; Echeverria FE
    Crit Rev Biomed Eng; 2021; 49(1):51-65. PubMed ID: 34347987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters.
    Lin WT; Tan HL; Duan ZL; Yue B; Ma R; He G; Tang TT
    Int J Nanomedicine; 2014; 9():1215-30. PubMed ID: 24634583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties.
    Lewandowska Ż; Piszczek P; Radtke A; Jędrzejewski T; Kozak W; Sadowska B
    J Mater Sci Mater Med; 2015 Apr; 26(4):163. PubMed ID: 25791457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of TiO
    Minagar S; Berndt CC; Gengenbach T; Wen C
    J Mater Chem B; 2014 Jan; 2(1):71-83. PubMed ID: 32261300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO
    Bhardwaj G; Webster TJ
    Int J Nanomedicine; 2017; 12():363-369. PubMed ID: 28123296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections.
    Ma M; Kazemzadeh-Narbat M; Hui Y; Lu S; Ding C; Chen DD; Hancock RE; Wang R
    J Biomed Mater Res A; 2012 Feb; 100(2):278-85. PubMed ID: 22045618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of photokilling of bacteria using titanium dioxide nanoparticles.
    Tsuang YH; Sun JS; Huang YC; Lu CH; Chang WH; Wang CC
    Artif Organs; 2008 Feb; 32(2):167-74. PubMed ID: 18269355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.