These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32441511)

  • 1. Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity.
    Basavalingappa V; Bera S; Xue B; O'Donnell J; Guerin S; Cazade PA; Yuan H; Haq EU; Silien C; Tao K; Shimon LJW; Tofail SAM; Thompson D; Kolusheva S; Yang R; Cao Y; Gazit E
    ACS Nano; 2020 Jun; 14(6):7025-7037. PubMed ID: 32441511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of heterochirality-mediated stereochemical interactions in peptide architectures.
    Zheng Y; Mao K; Chen S; Zhu X; Jiang M; Wu CJ; Zhu H
    Colloids Surf B Biointerfaces; 2023 Apr; 224():113200. PubMed ID: 36774824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Water Self-Diffusion in Diphenylalanine Peptide Nanotubes.
    Zelenovskiy PS; Domingues EM; Slabov V; Kopyl S; Ugolkov VL; Figueiredo FML; Kholkin AL
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27485-27492. PubMed ID: 32463652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide Coassembly to Enhance Piezoelectricity for Energy Harvesting.
    Yuan H; Han P; Tao Z; Xue B; Guo Y; Levy D; Hu W; Wang Y; Cao Y; Gazit E; Yang R
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6538-6546. PubMed ID: 35089003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the Biodegradability of Piezoelectric Peptide Nanotubes Integrated with Hydrophobic Porphyrin.
    Kim Y; Park H; Kim Y; Lee C; Park H; Lee JH
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38778-38785. PubMed ID: 35983899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why are diphenylalanine-based peptide nanostructures so rigid? Insights from first principles calculations.
    Azuri I; Adler-Abramovich L; Gazit E; Hod O; Kronik L
    J Am Chem Soc; 2014 Jan; 136(3):963-9. PubMed ID: 24368025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence.
    Handelman A; Kuritz N; Natan A; Rosenman G
    Langmuir; 2016 Mar; 32(12):2847-62. PubMed ID: 26496411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired Stable and Photoluminescent Assemblies for Power Generation.
    Tao K; Hu W; Xue B; Chovan D; Brown N; Shimon LJW; Maraba O; Cao Y; Tofail SAM; Thompson D; Li J; Yang R; Gazit E
    Adv Mater; 2019 Mar; 31(12):e1807481. PubMed ID: 30706551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirality-Dependent Copper-Diphenylalanine Assemblies with Tough Layered Structure and Enhanced Catalytic Performance.
    Zhang G; Liang Y; Wang Y; Li Q; Qi W; Zhang W; Su R; He Z
    ACS Nano; 2022 Apr; 16(4):6866-6877. PubMed ID: 35319863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the Self-Assembly of Highly Aromatic Phenylalanine Homopeptides.
    Mayans E; Alemán C
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33419355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seamless metallic coating and surface adhesion of self-assembled bioinspired nanostructures based on di-(3,4-dihydroxy-L-phenylalanine) peptide motif.
    Fichman G; Adler-Abramovich L; Manohar S; Mironi-Harpaz I; Guterman T; Seliktar D; Messersmith PB; Gazit E
    ACS Nano; 2014 Jul; 8(7):7220-8. PubMed ID: 24936704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of azide containing dipeptides.
    Yuran S; Razvag Y; Das P; Reches M
    J Pept Sci; 2014 Jul; 20(7):479-86. PubMed ID: 24889029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.