BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32441612)

  • 21. Kinetic and molecular analyses reveal isoprene degradation potential of Methylobacterium sp.
    Srivastva N; Vishwakarma P; Bhardwaj Y; Singh A; Manjunath K; Dubey SK
    Bioresour Technol; 2017 Oct; 242():87-91. PubMed ID: 28256295
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Larke-Mejía NL; Carrión O; Crombie AT; McGenity TJ; Murrell JC
    Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33050387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isoprene: New insights into the control of emission and mediation of stress tolerance by gene expression.
    Lantz AT; Allman J; Weraduwage SM; Sharkey TD
    Plant Cell Environ; 2019 Oct; 42(10):2808-2826. PubMed ID: 31350912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions.
    Feng Z; Yuan X; Fares S; Loreto F; Li P; Hoshika Y; Paoletti E
    Plant Cell Environ; 2019 Jun; 42(6):1939-1949. PubMed ID: 30767225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isoprene research - 60 years later, the biology is still enigmatic.
    Sharkey TD; Monson RK
    Plant Cell Environ; 2017 Sep; 40(9):1671-1678. PubMed ID: 28160522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests.
    Arneth A; Schurgers G; Hickler T; Miller PA
    Plant Biol (Stuttg); 2008 Jan; 10(1):150-62. PubMed ID: 17682966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012.
    Geron C; Daly R; Harley P; Rasmussen R; Seco R; Guenther A; Karl T; Gu L
    Chemosphere; 2016 Mar; 146():8-21. PubMed ID: 26706927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome Characterisation of an Isoprene-Degrading
    Uttarotai T; Sutheeworapong S; Crombie AT; Murrell JC; Mhuantong W; Noirungsee N; Wangkarn S; Bovonsombut S; McGenity TJ; Chitov T
    Biology (Basel); 2022 Mar; 11(4):. PubMed ID: 35453719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isoprene-degrading bacteria associated with the phyllosphere of Salix fragilis, a high isoprene-emitting willow of the Northern Hemisphere.
    Gibson L; Crombie AT; McNamara NP; Murrell JC
    Environ Microbiome; 2021 Aug; 16(1):17. PubMed ID: 34446108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isoprene emission from the forest of Haryana state.
    Singh AP; Varshney CK
    Environ Monit Assess; 2006 Nov; 122(1-3):145-51. PubMed ID: 16738764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas.
    Lahr EC; Schade GW; Crossett CC; Watson MR
    Glob Chang Biol; 2015 Nov; 21(11):4221-36. PubMed ID: 26111255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation of isoprene by Arthrobacter sp. strain BHU FT2: Genomics-proteomics enabled novel insights.
    Singh A; Kumar Pandey A; Kumar Dubey S
    Bioresour Technol; 2021 Nov; 340():125634. PubMed ID: 34325393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA).
    Seco R; Karl T; Guenther A; Hosman KP; Pallardy SG; Gu L; Geron C; Harley P; Kim S
    Glob Chang Biol; 2015 Oct; 21(10):3657-74. PubMed ID: 25980459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacteria produce the volatile hydrocarbon isoprene.
    Kuzma J; Nemecek-Marshall M; Pollock WH; Fall R
    Curr Microbiol; 1995 Feb; 30(2):97-103. PubMed ID: 7765889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation kinetics and metabolites in continuous biodegradation of isoprene.
    Srivastva N; Singh RS; Upadhyay SN; Dubey SK
    Bioresour Technol; 2016 Apr; 206():275-278. PubMed ID: 26883059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.
    Wang F; Lv X; Xie W; Zhou P; Zhu Y; Yao Z; Yang C; Yang X; Ye L; Yu H
    Metab Eng; 2017 Jan; 39():257-266. PubMed ID: 28034770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trade-Off Between Dimethyl Sulfide and Isoprene Emissions from Marine Phytoplankton.
    Dani KGS; Loreto F
    Trends Plant Sci; 2017 May; 22(5):361-372. PubMed ID: 28242195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis.
    Wolfertz M; Sharkey TD; Boland W; Kühnemann F
    Plant Physiol; 2004 Aug; 135(4):1939-45. PubMed ID: 15286290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methylotrophs and Methylotroph Populations for Chloromethane Degradation.
    Bringel F; Besaury L; Amato P; Kröber E; Kolb S; Keppler F; Vuilleumier S; Nadalig T
    Curr Issues Mol Biol; 2019; 33():149-172. PubMed ID: 31166190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.