These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32441729)

  • 1. Enhanced Seebeck coefficients of thermocells by heat-induced deposition of I
    Inoue H; Liang Y; Yamada T; Kimizuka N
    Chem Commun (Camb); 2020 Jun; 56(51):7013-7016. PubMed ID: 32441729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexakis(2,3,6-tri-
    Liang Y; Yamada T; Zhou H; Kimizuka N
    Chem Sci; 2019 Jan; 10(3):773-780. PubMed ID: 30746110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Thermoelectric Conversion with Polysulfide as Redox Species.
    Liang Y; Hui JK; Yamada T; Kimizuka N
    ChemSusChem; 2019 Sep; 12(17):4014-4020. PubMed ID: 31334607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Efficiency Cryo-Thermocells Assembled with Anisotropic Holey Graphene Aerogel Electrodes and a Eutectic Redox Electrolyte.
    Li G; Dong D; Hong G; Yan L; Zhang X; Song W
    Adv Mater; 2019 Jun; 31(25):e1901403. PubMed ID: 31034133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Conversion of Phase-Transition Entropy into Electrochemical Thermopower and the Peltier Effect.
    Zhou H; Matoba F; Matsuno R; Wakayama Y; Yamada T
    Adv Mater; 2023 Sep; 35(36):e2303341. PubMed ID: 37315308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of Thermocells Driven by the Volume Phase Transition of Hydrogel Nanoparticles.
    Guo B; Miura Y; Hoshino Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32184-32192. PubMed ID: 34197066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the local solvation structure of redox molecules in a mixed solvent for increasing the Seebeck coefficient of thermocells.
    Inoue H; Zhou H; Ando H; Nakagawa S; Yamada T
    Chem Sci; 2023 Dec; 15(1):146-153. PubMed ID: 38131095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host-Guest Inclusion Complexation of α-Cyclodextrin and Triiodide Examined Using UV-Vis Spectrophotometry.
    Pursell JL; Pursell CJ
    J Phys Chem A; 2016 Apr; 120(13):2144-9. PubMed ID: 26997285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Thermocell System Using Proton Solvation Entropy.
    Kobayashi T; Yamada T; Tadokoro M; Kimizuka N
    Chemistry; 2021 Mar; 27(13):4287-4290. PubMed ID: 33205557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular Thermo-Electrochemical Cells: Enhanced Thermoelectric Performance by Host-Guest Complexation and Salt-Induced Crystallization.
    Zhou H; Yamada T; Kimizuka N
    J Am Chem Soc; 2016 Aug; 138(33):10502-7. PubMed ID: 27508406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives.
    Dupont MF; MacFarlane DR; Pringle JM
    Chem Commun (Camb); 2017 Jun; 53(47):6288-6302. PubMed ID: 28534592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-Circuit Current in Polymeric Membrane-Based Thermocells: An Experimental Study.
    Barragán VM
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34203522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat.
    Yang P; Liu K; Chen Q; Mo X; Zhou Y; Li S; Feng G; Zhou J
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):12050-3. PubMed ID: 27557890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Thermal Gradient in Thermo-electrochemical Cells by Insertion of a Poly(Vinylidene Fluoride) Membrane.
    Hasan SW; Said SM; Sabri MF; Bakar AS; Hashim NA; Hasnan MM; Pringle JM; MacFarlane DR
    Sci Rep; 2016 Jul; 6():29328. PubMed ID: 27381946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-heptaiodide interactions in cyclomaltoheptaose (beta-cyclodextrin) polyiodide complexes as detected via Raman spectroscopy.
    Charalampopoulos VG; Papaioannou JC; Kakali G; Karayianni HS
    Carbohydr Res; 2008 Feb; 343(3):489-500. PubMed ID: 18067880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple.
    Taheri A; MacFarlane DR; Pozo-Gonzalo C; Pringle JM
    ChemSusChem; 2018 Aug; 11(16):2788-2796. PubMed ID: 29873193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High seebeck coefficient in middle-temperature thermocell with deep eutectic solvent.
    Antariksa NF; Yamada T; Kimizuka N
    Sci Rep; 2021 Jun; 11(1):11929. PubMed ID: 34099827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotropic Effect-Boosted Thermogalvanic Ionogel Thermocells for All-Weather Power Generation.
    Yang M; Hu Y; Wang X; Chen H; Yu J; Li W; Li R; Yan F
    Adv Mater; 2024 Apr; 36(16):e2312249. PubMed ID: 38193634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting.
    Yu B; Duan J; Cong H; Xie W; Liu R; Zhuang X; Wang H; Qi B; Xu M; Wang ZL; Zhou J
    Science; 2020 Oct; 370(6514):342-346. PubMed ID: 32913001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Electrospun Eugenol/Cyclodextrin Inclusion Complex Nanofibrous Webs for Enhanced Antioxidant Property, Water Solubility, and High Temperature Stability.
    Celebioglu A; Yildiz ZI; Uyar T
    J Agric Food Chem; 2018 Jan; 66(2):457-466. PubMed ID: 29251511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.