These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32441914)

  • 1. Surface Electronegativity as an Activity Descriptor to Screen Oxygen Evolution Reaction Catalysts of Li-O
    Zhao X; Gu F; Wang Y; Peng Z; Liu J
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27166-27175. PubMed ID: 32441914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O2 Battery.
    Zhu J; Wang F; Wang B; Wang Y; Liu J; Zhang W; Wen Z
    J Am Chem Soc; 2015 Oct; 137(42):13572-9. PubMed ID: 26436336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Morphology of Li
    Yang Y; Liu W; Wu N; Wang X; Zhang T; Chen L; Zeng R; Wang Y; Lu J; Fu L; Xiao L; Zhuang L
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19800-19806. PubMed ID: 28537386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.
    Ren X; Wang B; Zhu J; Liu J; Zhang W; Wen Z
    Phys Chem Chem Phys; 2015 Jun; 17(22):14605-12. PubMed ID: 25970821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved reversibility in lithium-oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst.
    Kim BG; Kim HJ; Back S; Nam KW; Jung Y; Han YK; Choi JW
    Sci Rep; 2014 Feb; 4():4225. PubMed ID: 24573326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal Phase-Controlled Modulation of Binary Transition Metal Oxides for Highly Reversible Li-O
    Cao D; Zheng L; Li Q; Zhang J; Dong Y; Yue J; Wang X; Bai Y; Tan G; Wu C
    Nano Lett; 2021 Jun; 21(12):5225-5232. PubMed ID: 34060314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anchoring NiO Nanosheet on the Surface of CNT to Enhance the Performance of a Li-O
    Chen S; Wang S; Dong Y; Du H; Zhao J; Zhang P
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Catalytic Activity of Co
    Gao R; Shang Z; Zheng L; Wang J; Sun L; Hu Z; Liu X
    Inorg Chem; 2019 Apr; 58(8):4989-4996. PubMed ID: 30788960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li-Air Batteries.
    Kavalsky L; Mukherjee S; Singh CV
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):499-510. PubMed ID: 30521304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-MnO
    Gu TH; Agyeman DA; Shin SJ; Jin X; Lee JM; Kim H; Kang YM; Hwang SJ
    Angew Chem Int Ed Engl; 2018 Dec; 57(49):15984-15989. PubMed ID: 30329196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cesium Lead Bromide Perovskite-Based Lithium-Oxygen Batteries.
    Zhou Y; Gu Q; Li Y; Tao L; Tan H; Yin K; Zhou J; Guo S
    Nano Lett; 2021 Jun; 21(11):4861-4867. PubMed ID: 34044536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: performance improvement through Li2O2 morphology control.
    Yang Y; Liu W; Wang Y; Wang X; Xiao L; Lu J; Zhuang L
    Phys Chem Chem Phys; 2014 Oct; 16(38):20618-23. PubMed ID: 25158000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li
    Feng N; Mu X; Zhang X; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyelemental Nanoparticles as Catalysts for a Li-O
    Jung WB; Park H; Jang JS; Kim DY; Kim DW; Lim E; Kim JY; Choi S; Suk J; Kang Y; Kim ID; Kim J; Wu M; Jung HT
    ACS Nano; 2021 Mar; 15(3):4235-4244. PubMed ID: 33691412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles study of rocksalt early transition-metal carbides as potential catalysts for Li-O
    Yang Y; Wang Y; Yao M; Wang X; Huang H
    Phys Chem Chem Phys; 2018 Dec; 20(48):30231-30238. PubMed ID: 30500014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential.
    Zhang J; Zhao Y; Zhao X; Liu Z; Chen W
    Sci Rep; 2014 Aug; 4():6005. PubMed ID: 25103186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Nanostructured Transition Metal Carbide- and Nitride-Based Cathode Electrocatalysts for Li-O
    Karuppasamy K; Prasanna K; Jothi VR; Vikraman D; Hussain S; Hwang JH; Kim HS
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33114076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.
    Kwabi DG; Tułodziecki M; Pour N; Itkis DM; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2016 Apr; 7(7):1204-12. PubMed ID: 26949979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Evaluation of LixOy Formation on δ-MnO2 in Nonaqueous Li-Air Batteries.
    Liu Z; De Jesus LR; Banerjee S; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23028-36. PubMed ID: 27532334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries.
    McCloskey BD; Garcia JM; Luntz AC
    J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.