These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 32441959)
1. Origin of Plasticity in Nanostructured Silicon. Zeng Z; Zeng Q; Ge M; Chen B; Lou H; Chen X; Yan J; Yang W; Mao HK; Yang D; Mao WL Phys Rev Lett; 2020 May; 124(18):185701. PubMed ID: 32441959 [TBL] [Abstract][Full Text] [Related]
3. In situ observation of shear-driven amorphization in silicon crystals. He Y; Zhong L; Fan F; Wang C; Zhu T; Mao SX Nat Nanotechnol; 2016 Oct; 11(10):866-871. PubMed ID: 27643458 [TBL] [Abstract][Full Text] [Related]
4. Atomistic deformation mechanism of silicon under laser-driven shock compression. Pandolfi S; Brown SB; Stubley PG; Higginbotham A; Bolme CA; Lee HJ; Nagler B; Galtier E; Sandberg RL; Yang W; Mao WL; Wark JS; Gleason AE Nat Commun; 2022 Sep; 13(1):5535. PubMed ID: 36130983 [TBL] [Abstract][Full Text] [Related]
5. Deconfinement leads to changes in the nanoscale plasticity of silicon. Chrobak D; Tymiak N; Beaber A; Ugurlu O; Gerberich WW; Nowak R Nat Nanotechnol; 2011 Jul; 6(8):480-4. PubMed ID: 21785429 [TBL] [Abstract][Full Text] [Related]
6. Deformation Behavior across the Zircon-Scheelite Phase Transition. Yue B; Hong F; Merkel S; Tan D; Yan J; Chen B; Mao HK Phys Rev Lett; 2016 Sep; 117(13):135701. PubMed ID: 27715087 [TBL] [Abstract][Full Text] [Related]
7. Silica nanoparticles alleviate cadmium toxicity in rice cells: Mechanisms and size effects. Cui J; Liu T; Li F; Yi J; Liu C; Yu H Environ Pollut; 2017 Sep; 228():363-369. PubMed ID: 28551566 [TBL] [Abstract][Full Text] [Related]
8. Enhancing Delithiation Reversibility of Li Gan C; Zhang C; Wen W; Liu Y; Chen J; Xie Q; Luo X ACS Appl Mater Interfaces; 2019 Oct; 11(39):35809-35819. PubMed ID: 31507163 [TBL] [Abstract][Full Text] [Related]
10. Formation of silicon nanoparticles by a pressure induced nucleation mechanism. Kang MK; Kim SJ; Kim HJ Nanoscale; 2013 Apr; 5(8):3266-71. PubMed ID: 23467641 [TBL] [Abstract][Full Text] [Related]
11. Epitaxial diamond-hexagonal silicon nano-ribbon growth on (001) silicon. Qiu Y; Bender H; Richard O; Kim MS; Van Besien E; Vos I; de Potter de ten Broeck M; Mocuta D; Vandervorst W Sci Rep; 2015 Aug; 5():12692. PubMed ID: 26239286 [TBL] [Abstract][Full Text] [Related]
12. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Wehrenberg CE; McGonegle D; Bolme C; Higginbotham A; Lazicki A; Lee HJ; Nagler B; Park HS; Remington BA; Rudd RE; Sliwa M; Suggit M; Swift D; Tavella F; Zepeda-Ruiz L; Wark JS Nature; 2017 Oct; 550(7677):496-499. PubMed ID: 29072261 [TBL] [Abstract][Full Text] [Related]
14. Time-dependent plasticity in silicon microbeams mediated by dislocation nucleation. Elhebeary M; Harzer T; Dehm G; A Saif MT Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16864-16871. PubMed ID: 32611814 [TBL] [Abstract][Full Text] [Related]
15. Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. Lee K; Lee J; Kwak M; Cho YL; Hwang B; Cho MJ; Lee NG; Park J; Lee SH; Park JG; Kim YG; Kim JS; Han TS; Cho HS; Park YJ; Lee SJ; Lee HG; Kim WK; Jeung IC; Song NW; Bae KH; Min JK J Nanobiotechnology; 2019 Feb; 17(1):24. PubMed ID: 30722792 [TBL] [Abstract][Full Text] [Related]
16. Diamond-hexagonal semiconductor nanocones with controllable apex angle. Cao L; Laim L; Ni C; Nabet B; Spanier JE J Am Chem Soc; 2005 Oct; 127(40):13782-3. PubMed ID: 16201786 [TBL] [Abstract][Full Text] [Related]