These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
924 related articles for article (PubMed ID: 32442149)
1. Predictive Modeling for Frailty Conditions in Elderly People: Machine Learning Approaches. Tarekegn A; Ricceri F; Costa G; Ferracin E; Giacobini M JMIR Med Inform; 2020 Jun; 8(6):e16678. PubMed ID: 32442149 [TBL] [Abstract][Full Text] [Related]
2. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage. Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327 [TBL] [Abstract][Full Text] [Related]
3. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis. Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862 [TBL] [Abstract][Full Text] [Related]
4. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. Sakr S; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Keteyian SJ; Blaha MJ; Al-Mallah MH BMC Med Inform Decis Mak; 2017 Dec; 17(1):174. PubMed ID: 29258510 [TBL] [Abstract][Full Text] [Related]
5. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study. Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416 [TBL] [Abstract][Full Text] [Related]
6. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women. Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976 [TBL] [Abstract][Full Text] [Related]
7. Importance of medical data preprocessing in predictive modeling and risk factor discovery for the frailty syndrome. Hassler AP; Menasalvas E; García-García FJ; Rodríguez-Mañas L; Holzinger A BMC Med Inform Decis Mak; 2019 Feb; 19(1):33. PubMed ID: 30777059 [TBL] [Abstract][Full Text] [Related]
8. Hospital mortality prediction in traumatic injuries patients: comparing different SMOTE-based machine learning algorithms. Hassanzadeh R; Farhadian M; Rafieemehr H BMC Med Res Methodol; 2023 Apr; 23(1):101. PubMed ID: 37087425 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of an artificial intelligence mobile application for predicting 30-day mortality in critically ill patients with orthopaedic trauma. Han T; Xiong F; Sun B; Zhong L; Han Z; Lei M Int J Med Inform; 2024 Apr; 184():105383. PubMed ID: 38387198 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the convenience of frailty index assessment for elderly Chinese people with machine learning methods. Huang L; Chen H; Liang Z Sci Rep; 2024 Oct; 14(1):23227. PubMed ID: 39369089 [TBL] [Abstract][Full Text] [Related]
11. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models. Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091 [TBL] [Abstract][Full Text] [Related]
12. Machine-learning models for predicting surgical site infections using patient pre-operative risk and surgical procedure factors. Mamlook REA; Wells LJ; Sawyer R Am J Infect Control; 2023 May; 51(5):544-550. PubMed ID: 36002080 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of machine learning models to predict frailty risk for elderly. Zhang W; Wang J; Xie F; Wang X; Dong S; Luo N; Li F; Li Y J Adv Nurs; 2024 Dec; 80(12):5064-5075. PubMed ID: 38605460 [TBL] [Abstract][Full Text] [Related]
14. Development and internal validation of a machine-learning-developed model for predicting 1-year mortality after fragility hip fracture. Kitcharanant N; Chotiyarnwong P; Tanphiriyakun T; Vanitcharoenkul E; Mahaisavariya C; Boonyaprapa W; Unnanuntana A BMC Geriatr; 2022 May; 22(1):451. PubMed ID: 35610589 [TBL] [Abstract][Full Text] [Related]
15. Comparison of machine learning models for bluetongue risk prediction: a seroprevalence study on small ruminants. Gouda HF; Hassan FAM; El-Araby EE; Moawed SA BMC Vet Res; 2022 Nov; 18(1):394. PubMed ID: 36348478 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years. Shim JG; Ryu KH; Cho EA; Ahn JH; Kim HK; Lee YJ; Lee SH Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833448 [No Abstract] [Full Text] [Related]
17. Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system. Das J; Kumar S; Mishra DC; Chaturvedi KK; Paul RK; Kairi A Front Genet; 2022; 13():1085332. PubMed ID: 36699447 [TBL] [Abstract][Full Text] [Related]
18. Machine learning approaches to predict peak demand days of cardiovascular admissions considering environmental exposure. Qiu H; Luo L; Su Z; Zhou L; Wang L; Chen Y BMC Med Inform Decis Mak; 2020 May; 20(1):83. PubMed ID: 32357880 [TBL] [Abstract][Full Text] [Related]
19. Derivation and validation of different machine-learning models in mortality prediction of trauma in motorcycle riders: a cross-sectional retrospective study in southern Taiwan. Kuo PJ; Wu SC; Chien PC; Rau CS; Chen YC; Hsieh HY; Hsieh CH BMJ Open; 2018 Jan; 8(1):e018252. PubMed ID: 29306885 [TBL] [Abstract][Full Text] [Related]
20. Exploiting Machine Learning Algorithms and Methods for the Prediction of Agitated Delirium After Cardiac Surgery: Models Development and Validation Study. Mufti HN; Hirsch GM; Abidi SR; Abidi SSR JMIR Med Inform; 2019 Oct; 7(4):e14993. PubMed ID: 31558433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]