BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32442519)

  • 1. Occlusion of the lumbar spine canal during high-rate axial compression.
    Robinson DL; Tse KM; Franklyn M; Ackland DC; Richardson MD; Lee PVS
    Spine J; 2020 Oct; 20(10):1692-1704. PubMed ID: 32442519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate.
    Tran NT; Watson NA; Tencer AF; Ching RP; Anderson PA
    Spine (Phila Pa 1976); 1995 Sep; 20(18):1984-8. PubMed ID: 8578372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Canal geometry changes associated with axial compressive cervical spine fracture.
    Carter JW; Mirza SK; Tencer AF; Ching RP
    Spine (Phila Pa 1976); 2000 Jan; 25(1):46-54. PubMed ID: 10647160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometric changes in the cervical spinal canal during impact.
    Chang DG; Tencer AF; Ching RP; Treece B; Senft D; Anderson PA
    Spine (Phila Pa 1976); 1994 Apr; 19(8):973-80. PubMed ID: 8009357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specimen-specific fracture risk curves of lumbar vertebrae under dynamic axial compression.
    Robinson DL; Tse KM; Franklyn M; Zhang J; Fernandez JW; Ackland DC; Lee PVS
    J Mech Behav Biomed Mater; 2021 Jun; 118():104457. PubMed ID: 33780859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model.
    Ching RP; Watson NA; Carter JW; Tencer AF
    Spine (Phila Pa 1976); 1997 Aug; 22(15):1710-5. PubMed ID: 9259780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic effects on the lumbar spinal canal: axially loaded CT-myelography and MRI in patients with sciatica and/or neurogenic claudication.
    Willén J; Danielson B; Gaulitz A; Niklason T; Schönström N; Hansson T
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2968-76. PubMed ID: 9431634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamic study of thoracolumbar burst fractures.
    Wilcox RK; Boerger TO; Allen DJ; Barton DC; Limb D; Dickson RA; Hall RM
    J Bone Joint Surg Am; 2003 Nov; 85(11):2184-9. PubMed ID: 14630851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of canal occlusion during the thoracolumbar burst fracture process.
    Wilcox RK; Boerger TO; Hall RM; Barton DC; Limb D; Dickson RA
    J Biomech; 2002 Mar; 35(3):381-4. PubMed ID: 11858815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Anatomical background of low back pain: variability and degeneration of the lumbar spinal canal and intervertebral disc].
    van Roy P; Barbaix E; Clarijs JP; Mense S
    Schmerz; 2001 Dec; 15(6):418-24. PubMed ID: 11793145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid cadaveric/surrogate model of thoracolumbar spine injury due to simulated fall from height.
    Ivancic PC
    Accid Anal Prev; 2013 Oct; 59():185-91. PubMed ID: 23792617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the independent risk factors of neurologic deficit after thoracolumbar burst fracture.
    Tang P; Long A; Shi T; Zhang L; Zhang L
    J Orthop Surg Res; 2016 Oct; 11(1):128. PubMed ID: 27788683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive loading of the spine may affect the spinal canal encroachment of burst fractures.
    Boisclair D; Mac-Thiong JM; Parent S; Petit Y
    J Spinal Disord Tech; 2013 Aug; 26(6):342-6. PubMed ID: 22274784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mysterious risk factor for bone cement leakage into the spinal canal through the Batson vein during percutaneous kyphoplasty: a case control study.
    Zhang S; Wang GJ; Wang Q; Yang J; Xu S; Yang CH
    BMC Musculoskelet Disord; 2019 Sep; 20(1):423. PubMed ID: 31510985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine.
    Kayanja MM; Togawa D; Lieberman IH
    Spine J; 2005; 5(1):55-63. PubMed ID: 15653085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Burst fractures of the lumbar spine in frontal crashes.
    Kaufman RP; Ching RP; Willis MM; Mack CD; Gross JA; Bulger EM
    Accid Anal Prev; 2013 Oct; 59():153-63. PubMed ID: 23792614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis.
    Singh K; Samartzis D; Vaccaro AR; Nassr A; Andersson GB; Yoon ST; Phillips FM; Goldberg EJ; An HS
    Spine J; 2005; 5(6):615-22. PubMed ID: 16291100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal pressure measurements during burst fracture formation in human lumbar vertebrae.
    Ochia RS; Ching RP
    Spine (Phila Pa 1976); 2002 Jun; 27(11):1160-7. PubMed ID: 12045511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acceleration level on lumbar spine injuries in military populations.
    Yoganandan N; Stemper BD; Baisden JL; Pintar FA; Paskoff GR; Shender BS
    Spine J; 2015 Jun; 15(6):1318-24. PubMed ID: 24374098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional morphology of the spinal canal after endplate, wedge, and burst fractures.
    Kifune M; Panjabi MM; Liu W; Arand M; Vasavada A; Oxland T
    J Spinal Disord; 1997 Dec; 10(6):457-66. PubMed ID: 9438809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.