These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32442702)

  • 1. Novel bacterial cellulose membrane biosynthesized by a new and highly efficient producer Komagataeibacter rhaeticus TJPU03.
    He X; Meng H; Song H; Deng S; He T; Wang S; Wei D; Zhang Z
    Carbohydr Res; 2020 Jul; 493():108030. PubMed ID: 32442702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.
    Machado RTA; Gutierrez J; Tercjak A; Trovatti E; Uahib FGM; Moreno GP; Nascimento AP; Berreta AA; Ribeiro SJL; Barud HS
    Carbohydr Polym; 2016 Nov; 152():841-849. PubMed ID: 27516336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha.
    Semjonovs P; Ruklisha M; Paegle L; Saka M; Treimane R; Skute M; Rozenberga L; Vikele L; Sabovics M; Cleenwerck I
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1003-1012. PubMed ID: 27678116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High yield production of cellulose by a
    Thorat MN; Dastager SG
    RSC Adv; 2018 Aug; 8(52):29797-29805. PubMed ID: 35547325
    [No Abstract]   [Full Text] [Related]  

  • 5. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration.
    Caro-Astorga J; Walker KT; Herrera N; Lee KY; Ellis T
    Nat Commun; 2021 Aug; 12(1):5027. PubMed ID: 34413311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.
    Rozenberga L; Skute M; Belkova L; Sable I; Vikele L; Semjonovs P; Saka M; Ruklisha M; Paegle L
    Carbohydr Polym; 2016 Jun; 144():33-40. PubMed ID: 27083790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice.
    Lin SP; Huang YH; Hsu KD; Lai YJ; Chen YK; Cheng KC
    Carbohydr Polym; 2016 Oct; 151():827-833. PubMed ID: 27474630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436
    Gorgieva S; Jančič U; Cepec E; Trček J
    Int J Biol Macromol; 2023 Jul; 244():125368. PubMed ID: 37330080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial Cellulose Production from agricultural Residues by two
    Akintunde MO; Adebayo-Tayo BC; Ishola MM; Zamani A; Horváth IS
    Bioengineered; 2022 Apr; 13(4):10010-10025. PubMed ID: 35416127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes.
    Gopu G; Govindan S
    Prep Biochem Biotechnol; 2018; 48(9):842-852. PubMed ID: 30303756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis.
    Li ZY; Azi F; Ge ZW; Liu YF; Yin XT; Dong MS
    Int J Biol Macromol; 2021 Nov; 191():211-221. PubMed ID: 34547311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial cellulose production by a strain of Komagataeibacter rhaeticus isolated from residual loquat.
    Ye J; Li J; Wang Q; Wang X; Wang S; Wang H; Xu J
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1551-1562. PubMed ID: 36723702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production.
    Zhang H; Ye C; Xu N; Chen C; Chen X; Yuan F; Xu Y; Yang J; Sun D
    Sci Rep; 2017 Aug; 7(1):7911. PubMed ID: 28801647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Knockdown of motility-related genes of
    Liu J; Wang X; Peng Z; Xin B; Zhong C
    Sheng Wu Gong Cheng Xue Bao; 2024 Jun; 40(6):1856-1867. PubMed ID: 38914496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea.
    Li J; Chen G; Zhang R; Wu H; Zeng W; Liang Z
    Biotechnol Appl Biochem; 2019 Jan; 66(1):108-118. PubMed ID: 30359481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769.
    Jacek P; Ryngajłło M; Bielecki S
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5339-5353. PubMed ID: 31037382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fruit peels support higher yield and superior quality bacterial cellulose production.
    Kumbhar JV; Rajwade JM; Paknikar KM
    Appl Microbiol Biotechnol; 2015 Aug; 99(16):6677-91. PubMed ID: 25957154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by
    Li Z; Chen SQ; Cao X; Li L; Zhu J; Yu H
    J Microbiol Biotechnol; 2021 Mar; 31(3):429-438. PubMed ID: 33323677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016.
    Güzel M; Akpınar Ö
    Int J Biol Macromol; 2020 Nov; 162():1597-1604. PubMed ID: 32777420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.