These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32442703)

  • 1. Conformation, flexibility and hydration of hyaluronic acid by molecular dynamics simulations.
    Taweechat P; Pandey RB; Sompornpisut P
    Carbohydr Res; 2020 Jul; 493():108026. PubMed ID: 32442703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of hyaluronic acid oligomers by experimental and theoretical NMR, and molecular dynamics simulation.
    Donati A; Magnani A; Bonechi C; Barbucci R; Rossi C
    Biopolymers; 2001 Nov; 59(6):434-45. PubMed ID: 11598878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyaluronan: the local solution conformation determined by NMR and computer modeling is close to a contracted left-handed 4-fold helix.
    Almond A; Deangelis PL; Blundell CD
    J Mol Biol; 2006 May; 358(5):1256-69. PubMed ID: 16584748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of a cyclic-beta-(1-->2) glucan containing an alpha-(1-->6) linkage as a 'molecular alleviator' for the macrocyclic conformational strain.
    Kim H; Jeong K; Cho KW; Paik SR; Jung S
    Carbohydr Res; 2006 Jun; 341(8):1011-9. PubMed ID: 16546149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling.
    Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH
    Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of the two disaccharides of hyaluronan in aqueous solution.
    Almond A; Sheehan JK; Brass A
    Glycobiology; 1997 Jul; 7(5):597-604. PubMed ID: 9254042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The solution conformation of hyaluronan: a combined NMR and molecular dynamics study.
    Holmbeck SM; Petillo PA; Lerner LE
    Biochemistry; 1994 Nov; 33(47):14246-55. PubMed ID: 7947836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferred conformation of the glycosidic linkage of methyl-beta-mannose.
    Coskuner O
    J Chem Phys; 2007 Jul; 127(1):015101. PubMed ID: 17627368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence.
    Shen T; Langan P; French AD; Johnson GP; Gnanakaran S
    J Am Chem Soc; 2009 Oct; 131(41):14786-94. PubMed ID: 19824731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of cyclohenicosakis-[(1-->2)-beta-D-gluco-henicosapyranosyl], a cyclic (1-->2)-beta-D-glucan (a 'cyclosophoraose') of DP 21.
    Choi YH; Yang CH; Kim HW; Jung S
    Carbohydr Res; 2000 Jun; 326(3):227-34. PubMed ID: 10903031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational Properties of Glycosaminoglycan Disaccharides: A Molecular Dynamics Study.
    Lutsyk V; Plazinski W
    J Phys Chem B; 2021 Oct; 125(39):10900-10916. PubMed ID: 34550710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR study of hydroxy and amide protons in hyaluronan polymers.
    Nestor G; Sandström C
    Carbohydr Polym; 2017 Feb; 157():920-928. PubMed ID: 27988009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined nuclear magnetic resonance and molecular dynamics study of the two structural motifs for mixed-linkage beta-glucans: methyl beta-cellobioside and methyl beta-laminarabioside.
    Christensen NJ; Hansen PI; Larsen FH; Folkerman T; Motawia MS; Engelsen SB
    Carbohydr Res; 2010 Feb; 345(4):474-86. PubMed ID: 20079487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational properties of acidic oligo- and disaccharides and their ability to bind calcium: a molecular modeling study.
    Plazinski W
    Carbohydr Res; 2012 Aug; 357():111-7. PubMed ID: 22704197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational behavior of hyaluronan in relation to its physical properties as probed by molecular modeling.
    Haxaire K; Braccini I; Milas M; Rinaudo M; Pérez S
    Glycobiology; 2000 Jun; 10(6):587-94. PubMed ID: 10814700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration of hyaluronan polysaccharide observed by IR spectrometry. III. Structure and mechanism of hydration.
    Maréchal Y; Milas M; Rinaudo M
    Biopolymers; 2003; 72(3):162-73. PubMed ID: 12722112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational flexibility of a protein-carbohydrate complex and the structure and ordering of surrounding water.
    Jana M; Bandyopadhyay S
    Phys Chem Chem Phys; 2012 May; 14(18):6628-38. PubMed ID: 22460826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the hexopyranose ring geometry on the conformation of glycosidic linkages investigated using molecular dynamics simulations.
    Plazinski W; Drach M
    Carbohydr Res; 2015 Oct; 415():17-27. PubMed ID: 26279522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic exchange between stabilized conformations predicted for hyaluronan tetrasaccharides: comparison of molecular dynamics simulations with available NMR data.
    Almond A; Brass A; Sheehan JK
    Glycobiology; 1998 Oct; 8(10):973-80. PubMed ID: 9719678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular hydrogen-bonding in aqueous carbohydrates as a cause or consequence of conformational preferences: a molecular dynamics study of cellobiose stereoisomers.
    Wang D; Ámundadóttir ML; van Gunsteren WF; Hünenberger PH
    Eur Biophys J; 2013 Jul; 42(7):521-37. PubMed ID: 23660988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.