These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32442845)

  • 1. Method to generate a large cohort in-silico for type 1 diabetes.
    Orozco-López O; Rodríguez-Herrero A; Castañeda CE; García-Sáez G; Elena Hernando M
    Comput Methods Programs Biomed; 2020 Sep; 193():105523. PubMed ID: 32442845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
    Kovatchev BP; Breton M; Man CD; Cobelli C
    J Diabetes Sci Technol; 2009 Jan; 3(1):44-55. PubMed ID: 19444330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive and Personalized Plasma Insulin Concentration Estimation for Artificial Pancreas Systems.
    Hajizadeh I; Rashid M; Samadi S; Feng J; Sevil M; Hobbs N; Lazaro C; Maloney Z; Brandt R; Yu X; Turksoy K; Littlejohn E; Cengiz E; Cinar A
    J Diabetes Sci Technol; 2018 May; 12(3):639-649. PubMed ID: 29566547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation environment to evaluate closed-loop insulin delivery systems in type 1 diabetes.
    Wilinska ME; Chassin LJ; Acerini CL; Allen JM; Dunger DB; Hovorka R
    J Diabetes Sci Technol; 2010 Jan; 4(1):132-44. PubMed ID: 20167177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensor-Augmented Pump-Based Customized Mathematical Model for Type 1 Diabetes.
    Grosman B; Wu D; Miller D; Lintereur L; Roy A; Parikh N; Kaufman FR
    Diabetes Technol Ther; 2018 Mar; 20(3):207-221. PubMed ID: 29565722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Silico Closed-Loop Control Validation Studies for Optimal Insulin Delivery in Type 1 Diabetes.
    Zavitsanou S; Mantalaris A; Georgiadis MC; Pistikopoulos EN
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2369-78. PubMed ID: 25935026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Insulin Basal Needs Estimation and Parameters Adjustment in Type 1 Diabetes.
    Berián J; Bravo I; Gardel-Vicente A; Lázaro-Galilea JL; Rigla M
    Sensors (Basel); 2021 Aug; 21(15):. PubMed ID: 34372462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time estimation of plasma insulin concentration from continuous glucose monitor measurements.
    de Pereda D; Romero-Vivo S; Ricarte B; Rossetti P; Ampudia-Blasco FJ; Bondia J
    Comput Methods Biomech Biomed Engin; 2016; 19(9):934-42. PubMed ID: 26343364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control-relevant models for glucose control using a priori patient characteristics.
    van Heusden K; Dassau E; Zisser HC; Seborg DE; Doyle FJ
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1839-49. PubMed ID: 22127988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved PID Algorithm Based on Insulin-on-Board Estimate for Blood Glucose Control with Type 1 Diabetes.
    Hu R; Li C
    Comput Math Methods Med; 2015; 2015():281589. PubMed ID: 26550021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Day Bayesian Cloning of Type 1 Diabetes Subjects: Toward a Single-Day UVA/Padova Type 1 Diabetes Simulator.
    Visentin R; Man CD; Cobelli C
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2416-2424. PubMed ID: 26930671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico preclinical trials: methodology and engineering guide to closed-loop control in type 1 diabetes mellitus.
    Patek SD; Bequette BW; Breton M; Buckingham BA; Dassau E; Doyle FJ; Lum J; Magni L; Zisser H
    J Diabetes Sci Technol; 2009 Mar; 3(2):269-82. PubMed ID: 20144358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Economic Model Predictive Control of Bihormonal Artificial Pancreas System Based on Switching Control and Dynamic R-parameter.
    Tang F; Wang Y
    J Diabetes Sci Technol; 2017 Nov; 11(6):1112-1123. PubMed ID: 28728434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a Run-to-Run Adaptive Artificial Pancreas: In Silico Results.
    Toffanin C; Visentin R; Messori M; Palma FD; Magni L; Cobelli C
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):479-488. PubMed ID: 28092515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling glucose dynamics during moderate exercise in individuals with type 1 diabetes.
    Alkhateeb H; El Fathi A; Ghanbari M; Haidar A
    PLoS One; 2021; 16(3):e0248280. PubMed ID: 33770092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A composite model of glucagon-glucose dynamics for in silico testing of bihormonal glucose controllers.
    Herrero P; Georgiou P; Oliver N; Reddy M; Johnston D; Toumazou C
    J Diabetes Sci Technol; 2013 Jul; 7(4):941-51. PubMed ID: 23911175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applicability results of a nonlinear model-based robust blood glucose control algorithm.
    Kovacs L; Szalay P; Almássy Z; Barkai L
    J Diabetes Sci Technol; 2013 May; 7(3):708-16. PubMed ID: 23759404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical validation of a new control-oriented model of insulin and glucose dynamics in subjects with type 1 diabetes.
    Fabietti PG; Canonico V; Orsini-Federici M; Sarti E; Massi-Benedetti M
    Diabetes Technol Ther; 2007 Aug; 9(4):327-38. PubMed ID: 17705688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic Virtual Population of Subjects With Type 1 Diabetes for the Assessment of Closed-Loop Glucose Controllers.
    Haidar A; Wilinska ME; Graveston JA; Hovorka R
    IEEE Trans Biomed Eng; 2013 Dec; 60(12):3524-33. PubMed ID: 23864149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control-Oriented Model With Intra-Patient Variations for an Artificial Pancreas.
    Moscoso-Vasquez M; Colmegna P; Rosales N; Garelli F; Sanchez-Pena R
    IEEE J Biomed Health Inform; 2020 Sep; 24(9):2681-2689. PubMed ID: 31995506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.