BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32442999)

  • 1. Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains.
    Zhao Z; Rinaldi C
    Phys Med Biol; 2020 Sep; 65(18):185013. PubMed ID: 32442999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of particle diameter and magnetocrystalline anisotropy on magnetic relaxation and magnetic particle imaging performance of magnetic nanoparticles.
    Zhao Z; Garraud N; Arnold DP; Rinaldi C
    Phys Med Biol; 2020 Jan; 65(2):025014. PubMed ID: 31766030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On magnetic dipole-dipole interactions of nanoparticles in magnetic particle imaging.
    Them K
    Phys Med Biol; 2017 Jun; 62(14):5623-5639. PubMed ID: 28467324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.
    Arami H; Ferguson RM; Khandhar AP; Krishnan KM
    Med Phys; 2013 Jul; 40(7):071904. PubMed ID: 23822441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.
    Feng X; Jia G; Peng J; Huang L; Liang X; Zhang H; Liu Y; Zhang B; Zhang Y; Sun M; Li P; Miao Q; Wang Y; Xi L; Hu K; Li T; Hui H; Tian J
    Med Phys; 2023 Jul; 50(7):4651-4663. PubMed ID: 37293867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.
    Ota S; Kitaguchi R; Takeda R; Yamada T; Takemura Y
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low drive field amplitude for improved image resolution in magnetic particle imaging.
    Croft LR; Goodwill PW; Konkle JJ; Arami H; Price DA; Li AX; Saritas EU; Conolly SM
    Med Phys; 2016 Jan; 43(1):424. PubMed ID: 26745935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation.
    Utkur M; Saritas EU
    Med Phys; 2022 Apr; 49(4):2590-2601. PubMed ID: 35103333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging.
    Tay ZW; Savliwala S; Hensley DW; Fung KLB; Colson C; Fellows BD; Zhou X; Huynh Q; Lu Y; Zheng B; Chandrasekharan P; Rivera-Jimenez SM; Rinaldi-Ramos CM; Conolly SM
    Small Methods; 2021 Nov; 5(11):e2100796. PubMed ID: 34927972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.
    Soto-Aquino D; Rosso D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056306. PubMed ID: 22181497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles.
    Weizenecker J; Gleich B; Rahmer J; Borgert J
    Phys Med Biol; 2012 Nov; 57(22):7317-27. PubMed ID: 23079678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging.
    Ferguson RM; Minard KR; Khandhar AP; Krishnan KM
    Med Phys; 2011 Mar; 38(3):1619-26. PubMed ID: 21520874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferrohydrodynamic modeling of magnetic nanoparticle harmonic spectra for magnetic particle imaging.
    Dhavalikar R; Maldonado-Camargo L; Garraud N; Rinaldi C
    J Appl Phys; 2015 Nov; 118(17):173906. PubMed ID: 26576063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-jump model for the combined Brownian and Néel relaxation dynamics of ferrofluids in the presence of external fields and flow.
    Ilg P
    Phys Rev E; 2019 Aug; 100(2-1):022608. PubMed ID: 31574757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotational properties of ferromagnetic nanoparticles driven by a precessing magnetic field in a viscous fluid.
    Lyutyy TV; Denisov SI; Reva VV; Bystrik YS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042312. PubMed ID: 26565245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients.
    Dhavalikar R; Rinaldi C
    J Magn Magn Mater; 2016 Dec; 419():267-273. PubMed ID: 28943706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation in x-space magnetic particle imaging.
    Croft LR; Goodwill PW; Conolly SM
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2335-42. PubMed ID: 22968211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trajectory analysis for field free line magnetic particle imaging.
    Top CB; Güngör A; Ilbey S; Güven HE
    Med Phys; 2019 Apr; 46(4):1592-1607. PubMed ID: 30695100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.