These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32443189)

  • 21. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of multi-heavy metal tolerance traits of soil-borne fungi for simultaneous removal of hazardous metals.
    Amin I; Nazir R; Rather MA
    World J Microbiol Biotechnol; 2024 Apr; 40(6):175. PubMed ID: 38647735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosorption Potential of
    Rudakiya DM; Iyer V; Shah D; Gupte A; Nath K
    Glob Chall; 2018 Dec; 2(12):1800064. PubMed ID: 31565319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multimetal interactions between Cd, Cu, Ni, Pb, and Zn uptake from water in the zebrafish Danio rerio.
    Komjarova I; Blust R
    Environ Sci Technol; 2009 Oct; 43(19):7225-9. PubMed ID: 19848126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimetal bioremediation and biomining by a combination of new aquatic strains of Mucor hiemalis.
    Hoque E; Fritscher J
    Sci Rep; 2019 Jul; 9(1):10318. PubMed ID: 31311950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mycoremediation of heavy metal (Cd and Cr)-polluted soil through indigenous metallotolerant fungal isolates.
    Khan I; Aftab M; Shakir S; Ali M; Qayyum S; Rehman MU; Haleem KS; Touseef I
    Environ Monit Assess; 2019 Aug; 191(9):585. PubMed ID: 31440913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora.
    Sharma KR; Giri R; Sharma RK
    Lett Appl Microbiol; 2020 Dec; 71(6):637-644. PubMed ID: 32785942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)].
    Mo Y; Pan R; Huang HW; Cao LX; Zhang RD
    Huan Jing Ke Xue; 2010 Jul; 31(7):1566-74. PubMed ID: 20825027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments.
    Seo DC; Yu K; DeLaune RD
    Chemosphere; 2008 Dec; 73(11):1757-64. PubMed ID: 18926554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effective removal of Cd
    Devanesan S; AlSalhi MS
    Chemosphere; 2021 Aug; 277():130230. PubMed ID: 34384169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Heavy metals content and pollution risk assessment of cropland soils around a pesticide industrial park].
    Shi NN; Ding YF; Zhao XF; Wang QS
    Ying Yong Sheng Tai Xue Bao; 2010 Jul; 21(7):1835-43. PubMed ID: 20879545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus.
    Goswami L; Arul Manikandan N; Pakshirajan K; Pugazhenthi G
    3 Biotech; 2017 May; 7(1):37. PubMed ID: 28439813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of lead, cadmium, chromium, and arsenic on the sorption of lindane and norfloxacin by river biofilms, particles, and sediments.
    Dong D; Li L; Zhang L; Hua X; Guo Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4632-4642. PubMed ID: 29192404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Movement of water and heavy metals (Zn, Cu, Pb and Ni) through sand and sandy loam amended with biosolids under steady-state hydrological conditions.
    Gove L; Cooke CM; Nicholson FA; Beck AJ
    Bioresour Technol; 2001 Jun; 78(2):171-9. PubMed ID: 11333037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2.
    Rahman Z; Thomas L; Singh VP
    J Basic Microbiol; 2019 May; 59(5):477-486. PubMed ID: 30900761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.
    Jin Z; Liu T; Yang Y; Jackson D
    Ecotoxicol Environ Saf; 2014 Jun; 104():43-50. PubMed ID: 24632122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6.
    Zhang D; Yin C; Abbas N; Mao Z; Zhang Y
    Sci Rep; 2020 Apr; 10(1):6940. PubMed ID: 32332813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of the health risks of heavy metals in soils and vegetables from greenhouse production systems in Iran.
    Jalali M; Karimi Mojahed J
    Int J Phytoremediation; 2020; 22(8):834-848. PubMed ID: 32091244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices.
    González-Guerrero M; Melville LH; Ferrol N; Lott JN; Azcón-Aguilar C; Peterson RL
    Can J Microbiol; 2008 Feb; 54(2):103-10. PubMed ID: 18388979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.