BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32443258)

  • 1. Triphenyl phosphate permeates the blood brain barrier and induces neurotoxicity in mouse brain.
    Liu X; Zhao X; Wang Y; Hong J; Shi M; Pfaff D; Guo L; Tang H
    Chemosphere; 2020 Aug; 252():126470. PubMed ID: 32443258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic, proteomic and metabolomic profiling unravel the mechanisms of hepatotoxicity pathway induced by triphenyl phosphate (TPP).
    Wang X; Li F; Liu J; Ji C; Wu H
    Ecotoxicol Environ Saf; 2020 Dec; 205():111126. PubMed ID: 32823070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quercetin Attenuates Manganese-Induced Neuroinflammation by Alleviating Oxidative Stress through Regulation of Apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways.
    Bahar E; Kim JY; Yoon H
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28914791
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Yang W; Zhao F; Fang Y; Li L; Li C; Ta N
    Chemosphere; 2018 Jun; 200():649-659. PubMed ID: 29518649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice.
    Wang D; Zhu W; Chen L; Yan J; Teng M; Zhou Z
    Environ Pollut; 2018 Jun; 237():10-17. PubMed ID: 29466770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triphenyl phosphate disturbs the lipidome and induces endoplasmic reticulum stress and apoptosis in JEG-3 cells.
    Wang Y; Hong J; Shi M; Guo L; Liu L; Tang H; Liu X
    Chemosphere; 2021 Jul; 275():129978. PubMed ID: 33662732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tributyltin induces oxidative damage, inflammation and apoptosis via disturbance in blood-brain barrier and metal homeostasis in cerebral cortex of rat brain: an in vivo and in vitro study.
    Mitra S; Gera R; Siddiqui WA; Khandelwal S
    Toxicology; 2013 Aug; 310():39-52. PubMed ID: 23743147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TPP and TCEP induce oxidative stress and alter steroidogenesis in TM3 Leydig cells.
    Chen G; Zhang S; Jin Y; Wu Y; Liu L; Qian H; Fu Z
    Reprod Toxicol; 2015 Nov; 57():100-10. PubMed ID: 26049154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydatin modulates inflammation by decreasing NF-κB activation and oxidative stress by increasing Gli1, Ptch1, SOD1 expression and ameliorates blood-brain barrier permeability for its neuroprotective effect in pMCAO rat brain.
    Ji H; Zhang X; Du Y; Liu H; Li S; Li L
    Brain Res Bull; 2012 Jan; 87(1):50-9. PubMed ID: 22001340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.
    Chen M; Li X; Fan R; Cao C; Yao H; Xu S
    Ecotoxicol Environ Saf; 2017 Nov; 145():503-510. PubMed ID: 28783600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipoic acid and pentoxifylline mitigate nandrolone decanoate-induced neurobehavioral perturbations in rats via re-balance of brain neurotransmitters, up-regulation of Nrf2/HO-1 pathway, and down-regulation of TNFR1 expression.
    Ahmed MA; El-Awdan SA
    Horm Behav; 2015 Jul; 73():186-99. PubMed ID: 26187709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway.
    Wang J; Jiang C; Zhang K; Lan X; Chen X; Zang W; Wang Z; Guan F; Zhu C; Yang X; Lu H; Wang J
    Free Radic Biol Med; 2019 Feb; 131():345-355. PubMed ID: 30553970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triphenyl phosphate-induced developmental toxicity in zebrafish: potential role of the retinoic acid receptor.
    Isales GM; Hipszer RA; Raftery TD; Chen A; Stapleton HM; Volz DC
    Aquat Toxicol; 2015 Apr; 161():221-30. PubMed ID: 25725299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osthole, a natural coumarin improves cognitive impairments and BBB dysfunction after transient global brain ischemia in C57 BL/6J mice: involvement of Nrf2 pathway.
    Chen Z; Mao X; Liu A; Gao X; Chen X; Ye M; Ye J; Liu P; Xu S; Liu J; He W; Lian Q; Pi R
    Neurochem Res; 2015 Jan; 40(1):186-94. PubMed ID: 25424966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroprotective effects of pterostilbene against oxidative stress injury: Involvement of nuclear factor erythroid 2-related factor 2 pathway.
    Wang B; Liu H; Yue L; Li X; Zhao L; Yang X; Wang X; Yang Y; Qu Y
    Brain Res; 2016 Jul; 1643():70-9. PubMed ID: 27107941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: protective effects of myo-inositol.
    Jiang WD; Liu Y; Hu K; Jiang J; Li SH; Feng L; Zhou XQ
    Aquat Toxicol; 2014 Oct; 155():301-13. PubMed ID: 25087001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saponins from Panax japonicus attenuate D-galactose-induced cognitive impairment through its anti-oxidative and anti-apoptotic effects in rats.
    Wang T; Di G; Yang L; Dun Y; Sun Z; Wan J; Peng B; Liu C; Xiong G; Zhang C; Yuan D
    J Pharm Pharmacol; 2015 Sep; 67(9):1284-96. PubMed ID: 25892055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HDAC3 inhibition prevents blood-brain barrier permeability through Nrf2 activation in type 2 diabetes male mice.
    Zhao Q; Zhang F; Yu Z; Guo S; Liu N; Jiang Y; Lo EH; Xu Y; Wang X
    J Neuroinflammation; 2019 May; 16(1):103. PubMed ID: 31101061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lycopene attenuates aluminum-induced hippocampal lesions by inhibiting oxidative stress-mediated inflammation and apoptosis in the rat.
    Cao Z; Wang P; Gao X; Shao B; Zhao S; Li Y
    J Inorg Biochem; 2019 Apr; 193():143-151. PubMed ID: 30743053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimalarial Drug Artemether Inhibits Neuroinflammation in BV2 Microglia Through Nrf2-Dependent Mechanisms.
    Okorji UP; Velagapudi R; El-Bakoush A; Fiebich BL; Olajide OA
    Mol Neurobiol; 2016 Nov; 53(9):6426-6443. PubMed ID: 26607631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.