These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32443259)

  • 1. The air quality index trend forecasting based on improved error correction model and data preprocessing for 17 port cities in China.
    Zhu S; Sun J; Liu Y; Lu M; Liu X
    Chemosphere; 2020 Aug; 252():126474. PubMed ID: 32443259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal-combined model for air quality index forecasting: 5 cities in North China.
    Zhu S; Yang L; Wang W; Liu X; Lu M; Shen X
    Environ Pollut; 2018 Dec; 243(Pt B):842-850. PubMed ID: 30245446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research and application of a novel hybrid air quality early-warning system: A case study in China.
    Li C; Zhu Z
    Sci Total Environ; 2018 Jun; 626():1421-1438. PubMed ID: 29898549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term PM2.5 forecasting based on CEEMD-RF in five cities of China.
    Liu D; Sun K
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):32790-32803. PubMed ID: 31502050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daily air quality index forecasting with hybrid models: A case in China.
    Zhu S; Lian X; Liu H; Hu J; Wang Y; Che J
    Environ Pollut; 2017 Dec; 231(Pt 2):1232-1244. PubMed ID: 28939124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.
    Yang Z; Wang J
    Environ Res; 2017 Oct; 158():105-117. PubMed ID: 28623745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China.
    Xu Y; Du P; Wang J
    Environ Pollut; 2017 Apr; 223():435-448. PubMed ID: 28126387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Air Quality Early-Warning System Based on Artificial Intelligence.
    Mo X; Zhang L; Li H; Qu Z
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31547044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined model of air quality index forecasting based on the combination of complementary empirical mode decomposition and sequence reconstruction.
    Wang W; Tang Q
    Environ Pollut; 2023 Jan; 316(Pt 2):120628. PubMed ID: 36370980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid model for PM₂.₅ forecasting based on ensemble empirical mode decomposition and a general regression neural network.
    Zhou Q; Jiang H; Wang J; Zhou J
    Sci Total Environ; 2014 Oct; 496():264-274. PubMed ID: 25089688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of complete ensemble empirical mode decomposition with deep long short-term memory model for particulate matter concentration prediction.
    Fu M; Le C; Fan T; Prakapovich R; Manko D; Dmytrenko O; Lande D; Shahid S; Yaseen ZM
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):64818-64829. PubMed ID: 34318419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Spatial-Temporal Characteristics of Air Pollution in China from 2001-2014.
    Bao J; Yang X; Zhao Z; Wang Z; Yu C; Li X
    Int J Environ Res Public Health; 2015 Dec; 12(12):15875-87. PubMed ID: 26694427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Spatial-Temporal Patterns and Influential Factors on Air Quality Index: The Case of North China.
    Xu W; Tian Y; Liu Y; Zhao B; Liu Y; Zhang X
    Int J Environ Res Public Health; 2019 Aug; 16(16):. PubMed ID: 31394837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.
    Li X; Peng L; Yao X; Cui S; Hu Y; You C; Chi T
    Environ Pollut; 2017 Dec; 231(Pt 1):997-1004. PubMed ID: 28898956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong.
    Zhang J; Ding W
    Int J Environ Res Public Health; 2017 Jan; 14(2):. PubMed ID: 28125034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang.
    Liu BC; Binaykia A; Chang PC; Tiwari MK; Tsao CC
    PLoS One; 2017; 12(7):e0179763. PubMed ID: 28708836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran.
    Ghaemi Z; Alimohammadi A; Farnaghi M
    Environ Monit Assess; 2018 Apr; 190(5):300. PubMed ID: 29679160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid air pollutant concentration prediction model combining secondary decomposition and sequence reconstruction.
    Sun W; Huang C
    Environ Pollut; 2020 Nov; 266(Pt 3):115216. PubMed ID: 32763723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily scale air quality index forecasting using bidirectional recurrent neural networks: Case study of Delhi, India.
    Pande CB; Kushwaha NL; Alawi OA; Sammen SS; Sidek LM; Yaseen ZM; Pal SC; Katipoğlu OM
    Environ Pollut; 2024 Jun; 351():124040. PubMed ID: 38685551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intelligent interval forecasting system based on fuzzy time series and error distribution characteristics for air quality index.
    Yang H; Gao Y; Zhao F; Wang J
    Environ Res; 2024 Jun; 251(Pt 1):118577. PubMed ID: 38432567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.