BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32443386)

  • 21. Rhein suppresses esophageal cancer development by regulating cell cycle through DNMT3B gene.
    Li C; Yu J; Feng Y; Sun X; Sun M; Ni W; Shao J; Wang B
    Med Oncol; 2024 May; 41(6):153. PubMed ID: 38743323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.
    Chen L; Lu D; Sun K; Xu Y; Hu P; Li X; Xu F
    Gene; 2019 Apr; 692():119-125. PubMed ID: 30654001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments.
    Zheng MJ; Li X; Hu YX; Dong H; Gou R; Nie X; Liu Q; Ying-Ying H; Liu JJ; Lin B
    J Cell Physiol; 2019 Jul; 234(7):11023-11036. PubMed ID: 30633343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis.
    Yu C; Chen F; Jiang J; Zhang H; Zhou M
    Mol Med Rep; 2019 Aug; 20(2):1259-1269. PubMed ID: 31173250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High expression of caspase-8 as a predictive factor of poor prognosis in patients with esophageal cancer.
    Chai J; Lei Y; Xiang X; Ye J; Zhao H; Yi L
    Cancer Med; 2023 Mar; 12(6):7651-7666. PubMed ID: 36533709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of differentially expressed genes between triple and non-triple-negative breast cancer using bioinformatics analysis.
    Zhai Q; Li H; Sun L; Yuan Y; Wang X
    Breast Cancer; 2019 Nov; 26(6):784-791. PubMed ID: 31197620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinformatics analysis of gene expression profiles of esophageal squamous cell carcinoma.
    He Y; Liu J; Zhao Z; Zhao H
    Dis Esophagus; 2017 May; 30(5):1-8. PubMed ID: 28375447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screening of potential key genes in esophageal cancer based on RBP and expression verification of HENMT1.
    Reyimu A; Xing F; Zhou W; Zheng Y; Liu B; Dai J; Xing Y; Gao J
    Medicine (Baltimore); 2023 Dec; 102(49):e36544. PubMed ID: 38065897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of EFNA1 on cell phenotype and prognosis of esophageal carcinoma.
    Zhang Y; Zhang J; Pan G; Guan T; Zhang C; Hao A; Li Y; Ren H
    World J Surg Oncol; 2021 Aug; 19(1):242. PubMed ID: 34399788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Key Genes and Pathways in Cervical Cancer by Bioinformatics Analysis.
    Wu X; Peng L; Zhang Y; Chen S; Lei Q; Li G; Zhang C
    Int J Med Sci; 2019; 16(6):800-812. PubMed ID: 31337953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic investigation of the clinical significance and prognostic value of the CBXs in esophageal cancer.
    Hou J; Yang Y; Gao H; Ouyang T; Liu Q; Ding R; Kan H
    Medicine (Baltimore); 2022 Oct; 101(40):e30888. PubMed ID: 36221371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The identification of a common different gene expression signature in patients with colorectal cancer.
    Zhao ZW; Fan XX; Yang LL; Song JJ; Fang SJ; Tu JF; Chen MJ; Zheng LY; Wu FZ; Zhang DK; Ying XH; Ji JS
    Math Biosci Eng; 2019 Apr; 16(4):2942-2958. PubMed ID: 31137244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of potential target genes and crucial pathways in small cell lung cancer based on bioinformatic strategy and human samples.
    Chen X; Wang L; Su X; Luo SY; Tang X; Huang Y
    PLoS One; 2020; 15(11):e0242194. PubMed ID: 33186389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening and function analysis of hub genes and pathways in hepatocellular carcinoma via bioinformatics approaches.
    Zhang L; Huang Y; Ling J; Zhuo W; Yu Z; Shao M; Luo Y; Zhu Y
    Cancer Biomark; 2018; 22(3):511-521. PubMed ID: 29843214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 May Be Potential Therapeutic Targets for Hepatocellular Carcinoma Using Integrated Bioinformatic Analysis.
    Yang WX; Pan YY; You CG
    Biomed Res Int; 2019; 2019():1245072. PubMed ID: 31737652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction of an immune-related prognostic model and potential drugs screening for esophageal cancer based on bioinformatics analyses and network pharmacology.
    Qi P; Qi B; Gu C; Huo S; Dang X; Liu Y; Zhao B
    Immun Inflamm Dis; 2024 May; 12(5):e1266. PubMed ID: 38804848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Associated with Occurrence and Prognosis of Oral Squamous Cell Carcinoma.
    Ge Y; Li W; Ni Q; He Y; Chu J; Wei P
    Med Sci Monit; 2019 Sep; 25():7272-7288. PubMed ID: 31562292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of CXCL13 as a potential biomarker in clear cell renal cell carcinoma via comprehensive bioinformatics analysis.
    Xu T; Ruan H; Song Z; Cao Q; Wang K; Bao L; Liu D; Tong J; Yang H; Chen K; Zhang X
    Biomed Pharmacother; 2019 Oct; 118():109264. PubMed ID: 31390578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic subtypes and immune landscapes in esophageal squamous cell carcinoma: prognostic implications and potential for personalized therapies.
    Yu XW; She PW; Chen FC; Chen YY; Zhou S; Wang XM; Lin XR; Liu QL; Huang ZJ; Qiu Y
    BMC Cancer; 2024 Feb; 24(1):230. PubMed ID: 38373930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Potential Biomarkers in Glioblastoma through Bioinformatic Analysis and Evaluating Their Prognostic Value.
    Zhou Y; Yang L; Zhang X; Chen R; Chen X; Tang W; Zhang M
    Biomed Res Int; 2019; 2019():6581576. PubMed ID: 31119182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.