These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32443422)

  • 1. Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering.
    Salati MA; Khazai J; Tahmuri AM; Samadi A; Taghizadeh A; Taghizadeh M; Zarrintaj P; Ramsey JD; Habibzadeh S; Seidi F; Saeb MR; Mozafari M
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32443422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.
    Yang J; Zhang YS; Yue K; Khademhosseini A
    Acta Biomater; 2017 Jul; 57():1-25. PubMed ID: 28088667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agarose-based biomaterials for advanced drug delivery.
    Khodadadi Yazdi M; Taghizadeh A; Taghizadeh M; Stadler FJ; Farokhi M; Mottaghitalab F; Zarrintaj P; Ramsey JD; Seidi F; Saeb MR; Mozafari M
    J Control Release; 2020 Oct; 326():523-543. PubMed ID: 32702391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering.
    Singh YP; Bhardwaj N; Mandal BB
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21236-49. PubMed ID: 27459679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration.
    Jeznach O; Kołbuk D; Sajkiewicz P
    J Biomed Mater Res A; 2018 Oct; 106(10):2762-2776. PubMed ID: 29726104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage.
    Toh WS; Spector M; Lee EH; Cao T
    Mol Pharm; 2011 Aug; 8(4):994-1001. PubMed ID: 21500855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering.
    Bao W; Li M; Yang Y; Wan Y; Wang X; Bi N; Li C
    Front Chem; 2020; 8():53. PubMed ID: 32117879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells.
    Li F; Truong VX; Fisch P; Levinson C; Glattauer V; Zenobi-Wong M; Thissen H; Forsythe JS; Frith JE
    Acta Biomater; 2018 Sep; 77():48-62. PubMed ID: 30006317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the biocompatibility and stability of allogeneic tissue-engineered cartilage in humanized mice.
    Perrier-Groult E; Pérès E; Pasdeloup M; Gazzolo L; Duc Dodon M; Mallein-Gerin F
    PLoS One; 2019; 14(5):e0217183. PubMed ID: 31107916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage.
    Popa EG; Reis RL; Gomes ME
    Crit Rev Biotechnol; 2015; 35(3):410-24. PubMed ID: 24646368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agarose-based biomaterials for tissue engineering.
    Zarrintaj P; Manouchehri S; Ahmadi Z; Saeb MR; Urbanska AM; Kaplan DL; Mozafari M
    Carbohydr Polym; 2018 May; 187():66-84. PubMed ID: 29486846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration.
    Richardson SM; Kalamegam G; Pushparaj PN; Matta C; Memic A; Khademhosseini A; Mobasheri R; Poletti FL; Hoyland JA; Mobasheri A
    Methods; 2016 Apr; 99():69-80. PubMed ID: 26384579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration.
    Correia CR; Reis RL; Mano JF
    Adv Exp Med Biol; 2015; 881():143-60. PubMed ID: 26545749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable hydrogels for cartilage and bone tissue engineering.
    Liu M; Zeng X; Ma C; Yi H; Ali Z; Mou X; Li S; Deng Y; He N
    Bone Res; 2017; 5():17014. PubMed ID: 28584674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of tissue engineering in articular cartilage repair and regeneration.
    Zhang L; Hu J; Athanasiou KA
    Crit Rev Biomed Eng; 2009; 37(1-2):1-57. PubMed ID: 20201770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
    Lindberg GCJ; Longoni A; Lim KS; Rosenberg AJ; Hooper GJ; Gawlitta D; Woodfield TBF
    Acta Biomater; 2019 Feb; 85():117-130. PubMed ID: 30572166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced Strategies for Articular Cartilage Defect Repair.
    Matsiko A; Levingstone TJ; O'Brien FJ
    Materials (Basel); 2013 Feb; 6(2):637-668. PubMed ID: 28809332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.
    Bhardwaj N; Devi D; Mandal BB
    Macromol Biosci; 2015 Feb; 15(2):153-82. PubMed ID: 25283763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.