These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32443662)

  • 21. Site-specific DNA damage by phenylhydrazine and phenelzine in the presence of Cu(II) ion or Fe(III) complexes: roles of active oxygen species and carbon radicals.
    Yamamoto K; Kawanishi S
    Chem Res Toxicol; 1992; 5(3):440-6. PubMed ID: 1324022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma.
    Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochromes P-450.
    Ingelman-Sundberg M; Johansson I
    J Biol Chem; 1984 May; 259(10):6447-58. PubMed ID: 6327680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in metal-induced oxidative stress and human disease.
    Jomova K; Valko M
    Toxicology; 2011 May; 283(2-3):65-87. PubMed ID: 21414382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors influencing the DNA nuclease activity of iron, cobalt, nickel, and copper chelates.
    Joyner JC; Reichfield J; Cowan JA
    J Am Chem Soc; 2011 Oct; 133(39):15613-26. PubMed ID: 21815680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of metal chelators on the oxidative stability of model wine.
    Kreitman GY; Cantu A; Waterhouse AL; Elias RJ
    J Agric Food Chem; 2013 Oct; 61(39):9480-7. PubMed ID: 24001152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of metal chelators on the production of hydroxyl radicals in thylakoids.
    Snyrychová I; Pospísil P; Naus J
    Photosynth Res; 2006 Jun; 88(3):323-9. PubMed ID: 16755325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism.
    Samuni A; Aronovitch J; Godinger D; Chevion M; Czapski G
    Eur J Biochem; 1983 Dec; 137(1-2):119-24. PubMed ID: 6317379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyridoxal isonicotinoyl hydrazone (PIH) prevents copper-mediated in vitro free radical formation.
    Hermes-Lima M; Gonçalves MS; Andrade RG
    Mol Cell Biochem; 2001 Dec; 228(1-2):73-82. PubMed ID: 11855743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative study of the redox-cycling of a quinone (rifamycin S) and a quinonimine (rifabutin) antibiotic by rat liver microsomes.
    Rao DN; Cederbaum AI
    Free Radic Biol Med; 1997; 22(3):439-46. PubMed ID: 8981035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photochemical reduction of ferric iron by chelators results in DNA strand breaks.
    Chao CC; Aust AE
    Arch Biochem Biophys; 1993 Feb; 300(2):544-50. PubMed ID: 8382025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potent antitumor activity of novel iron chelators derived from di-2-pyridylketone isonicotinoyl hydrazone involves fenton-derived free radical generation.
    Chaston TB; Watts RN; Yuan J; Richardson DR
    Clin Cancer Res; 2004 Nov; 10(21):7365-74. PubMed ID: 15534113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model studies of the iron-catalysed Haber-Weiss cycle and the ascorbate-driven Fenton reaction.
    Burkitt MJ; Gilbert BC
    Free Radic Res Commun; 1990; 10(4-5):265-80. PubMed ID: 1963164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.
    Valko M; Jomova K; Rhodes CJ; Kuča K; Musílek K
    Arch Toxicol; 2016 Jan; 90(1):1-37. PubMed ID: 26343967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactions of low valent transition metal complexes with hydrogen peroxide. Are they "Fenton-like" or not? 4. The case of Fe(II)L, L = edta; hedta and tcma.
    Luzzatto E; Cohen H; Stockheim C; Wieghardt K; Meyerstein D
    Free Radic Res; 1995 Nov; 23(5):453-63. PubMed ID: 7581828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals.
    Chevion M
    Free Radic Biol Med; 1988; 5(1):27-37. PubMed ID: 3075945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superoxide and hydrogen peroxide suppression by metal ions and their EDTA complexes.
    Fisher AE; Maxwell SC; Naughton DP
    Biochem Biophys Res Commun; 2004 Mar; 316(1):48-51. PubMed ID: 15003509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology.
    Yamazaki I; Piette LH
    J Biol Chem; 1990 Aug; 265(23):13589-94. PubMed ID: 2166035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter.
    Valavanidis A; Fiotakis K; Bakeas E; Vlahogianni T
    Redox Rep; 2005; 10(1):37-51. PubMed ID: 15829110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.