BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 32443885)

  • 1. Methanol-Essential Growth of
    Hennig G; Haupka C; Brito LF; Rückert C; Cahoreau E; Heux S; Wendisch VF
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32443885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
    Leßmeier L; Pfeifenschneider J; Carnicer M; Heux S; Portais JC; Wendisch VF
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10163-76. PubMed ID: 26276544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.
    Witthoff S; Schmitz K; Niedenführ S; Nöh K; Noack S; Bott M; Marienhagen J
    Appl Environ Microbiol; 2015 Mar; 81(6):2215-25. PubMed ID: 25595770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production.
    Tuyishime P; Wang Y; Fan L; Zhang Q; Li Q; Zheng P; Sun J; Ma Y
    Metab Eng; 2018 Sep; 49():220-231. PubMed ID: 30048680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum.
    Wang Y; Fan L; Tuyishime P; Liu J; Zhang K; Gao N; Zhang Z; Ni X; Feng J; Yuan Q; Ma H; Zheng P; Sun J; Ma Y
    Commun Biol; 2020 May; 3(1):217. PubMed ID: 32382107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methanol production by reversed methylotrophy constructed in
    Takeya T; Yamakita M; Hayashi D; Fujisawa K; Sakai Y; Yurimoto H
    Biosci Biotechnol Biochem; 2020 May; 84(5):1062-1068. PubMed ID: 31942827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression.
    Yasueda H; Kawahara Y; Sugimoto S
    J Bacteriol; 1999 Dec; 181(23):7154-60. PubMed ID: 10572115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Bacillus methanolicus in 2 M methanol at 50 °C: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway.
    Bozdag A; Komives C; Flickinger MC
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1027-38. PubMed ID: 25952117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Artificial Fusion Proteins for Enhanced Methanol Bioconversion.
    Fan L; Wang Y; Tuyishime P; Gao N; Li Q; Zheng P; Sun J; Ma Y
    Chembiochem; 2018 Dec; 19(23):2465-2471. PubMed ID: 30246938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Escherichia coli for methanol conversion.
    Müller JEN; Meyer F; Litsanov B; Kiefer P; Potthoff E; Heux S; Quax WJ; Wendisch VF; Brautaset T; Portais JC; Vorholt JA
    Metab Eng; 2015 Mar; 28():190-201. PubMed ID: 25596507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing Synthetic Methylotrophs by Metabolic Engineering-Guided Adaptive Laboratory Evolution.
    Wang Y; Zheng P; Sun J
    Adv Biochem Eng Biotechnol; 2022; 180():127-148. PubMed ID: 35220456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic organization and biochemistry of the ribulose monophosphate pathway and its application in biotechnology.
    Yurimoto H; Kato N; Sakai Y
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):407-16. PubMed ID: 19593556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary engineering of Corynebacterium glutamicum.
    Stella RG; Wiechert J; Noack S; Frunzke J
    Biotechnol J; 2019 Sep; 14(9):e1800444. PubMed ID: 30927493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribulose Monophosphate Shunt Provides Nearly All Biomass and Energy Required for Growth of E. coli.
    He H; Edlich-Muth C; Lindner SN; Bar-Even A
    ACS Synth Biol; 2018 Jun; 7(6):1601-1611. PubMed ID: 29756766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum.
    Blombach B; Eikmanns BJ
    Bioeng Bugs; 2011; 2(6):346-50. PubMed ID: 22008938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic methylotrophy: Strategies to assimilate methanol for growth and chemicals production.
    Antoniewicz MR
    Curr Opin Biotechnol; 2019 Oct; 59():165-174. PubMed ID: 31437746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards methionine overproduction in Corynebacterium glutamicum--methanethiol and dimethyldisulfide as reduced sulfur sources.
    Bolten CJ; Schröder H; Dickschat J; Wittmann C
    J Microbiol Biotechnol; 2010 Aug; 20(8):1196-203. PubMed ID: 20798582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum.
    Prell C; Busche T; Rückert C; Nolte L; Brandenbusch C; Wendisch VF
    Microb Cell Fact; 2021 May; 20(1):97. PubMed ID: 33971881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
    Brautaset T; Jakobsen M ØM; Flickinger MC; Valla S; Ellingsen TE
    J Bacteriol; 2004 Mar; 186(5):1229-38. PubMed ID: 14973041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.