These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 32443951)

  • 1. Enhancer Predictions and Genome-Wide Regulatory Circuits.
    Beer MA; Shigaki D; Huangfu D
    Annu Rev Genomics Hum Genet; 2020 Aug; 21():37-54. PubMed ID: 32443951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ANANSE: an enhancer network-based computational approach for predicting key transcription factors in cell fate determination.
    Xu Q; Georgiou G; Frölich S; van der Sande M; Veenstra GJC; Zhou H; van Heeringen SJ
    Nucleic Acids Res; 2021 Aug; 49(14):7966-7985. PubMed ID: 34244796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput functional testing of ENCODE segmentation predictions.
    Kwasnieski JC; Fiore C; Chaudhari HG; Cohen BA
    Genome Res; 2014 Oct; 24(10):1595-602. PubMed ID: 25035418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative machine learning framework for the identification of cell-specific enhancers from the human genome.
    Basith S; Hasan MM; Lee G; Wei L; Manavalan B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.
    Rhie SK; Guo Y; Tak YG; Yao L; Shen H; Coetzee GA; Laird PW; Farnham PJ
    Epigenetics Chromatin; 2016; 9():50. PubMed ID: 27833659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational identification of active enhancers in model organisms.
    Wang C; Zhang MQ; Zhang Z
    Genomics Proteomics Bioinformatics; 2013 Jun; 11(3):142-50. PubMed ID: 23685394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide maps of distal gene regulatory enhancers active in the human placenta.
    Zhang J; Simonti CN; Capra JA
    PLoS One; 2018; 13(12):e0209611. PubMed ID: 30589856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancer prediction with histone modification marks using a hybrid neural network model.
    Lim A; Lim S; Kim S
    Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of enhancer regulatory circuit perturbation driven by copy number variations in malignant glioma.
    Xiao J; Jin X; Zhang C; Zou H; Chang Z; Han N; Li X; Zhang Y; Li Y
    Theranostics; 2021; 11(7):3060-3073. PubMed ID: 33537074
    [No Abstract]   [Full Text] [Related]  

  • 11. Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN.
    Zacher B; Michel M; Schwalb B; Cramer P; Tresch A; Gagneur J
    PLoS One; 2017; 12(1):e0169249. PubMed ID: 28056037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence based prediction of enhancer regions from DNA random walk.
    Singh AP; Mishra S; Jabin S
    Sci Rep; 2018 Oct; 8(1):15912. PubMed ID: 30374023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational schemes for the prediction and annotation of enhancers from epigenomic assays.
    Whitaker JW; Nguyen TT; Zhu Y; Wildberg A; Wang W
    Methods; 2015 Jan; 72():86-94. PubMed ID: 25461775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating diverse datasets improves developmental enhancer prediction.
    Erwin GD; Oksenberg N; Truty RM; Kostka D; Murphy KK; Ahituv N; Pollard KS; Capra JA
    PLoS Comput Biol; 2014 Jun; 10(6):e1003677. PubMed ID: 24967590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress and challenges in bioinformatics approaches for enhancer identification.
    Kleftogiannis D; Kalnis P; Bajic VB
    Brief Bioinform; 2016 Nov; 17(6):967-979. PubMed ID: 26634919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive revisit of the machine-learning tools developed for the identification of enhancers in the human genome.
    Phan LT; Oh C; He T; Manavalan B
    Proteomics; 2023 Jul; 23(13-14):e2200409. PubMed ID: 37021401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases.
    Marbach D; Lamparter D; Quon G; Kellis M; Kutalik Z; Bergmann S
    Nat Methods; 2016 Apr; 13(4):366-70. PubMed ID: 26950747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers.
    Nagari A; Murakami S; Malladi VS; Kraus WL
    Methods Mol Biol; 2017; 1468():121-38. PubMed ID: 27662874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward predictive R-loop computational biology: genome-scale prediction of R-loops reveals their association with complex promoter structures, G-quadruplexes and transcriptionally active enhancers.
    Kuznetsov VA; Bondarenko V; Wongsurawat T; Yenamandra SP; Jenjaroenpun P
    Nucleic Acids Res; 2018 Sep; 46(15):7566-7585. PubMed ID: 29945198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards genome-wide prediction and characterization of enhancers in plants.
    Marand AP; Zhang T; Zhu B; Jiang J
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):131-139. PubMed ID: 27321818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.