BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 32443951)

  • 1. Enhancer Predictions and Genome-Wide Regulatory Circuits.
    Beer MA; Shigaki D; Huangfu D
    Annu Rev Genomics Hum Genet; 2020 Aug; 21():37-54. PubMed ID: 32443951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ANANSE: an enhancer network-based computational approach for predicting key transcription factors in cell fate determination.
    Xu Q; Georgiou G; Frölich S; van der Sande M; Veenstra GJC; Zhou H; van Heeringen SJ
    Nucleic Acids Res; 2021 Aug; 49(14):7966-7985. PubMed ID: 34244796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput functional testing of ENCODE segmentation predictions.
    Kwasnieski JC; Fiore C; Chaudhari HG; Cohen BA
    Genome Res; 2014 Oct; 24(10):1595-602. PubMed ID: 25035418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative machine learning framework for the identification of cell-specific enhancers from the human genome.
    Basith S; Hasan MM; Lee G; Wei L; Manavalan B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.
    Rhie SK; Guo Y; Tak YG; Yao L; Shen H; Coetzee GA; Laird PW; Farnham PJ
    Epigenetics Chromatin; 2016; 9():50. PubMed ID: 27833659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational identification of active enhancers in model organisms.
    Wang C; Zhang MQ; Zhang Z
    Genomics Proteomics Bioinformatics; 2013 Jun; 11(3):142-50. PubMed ID: 23685394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide maps of distal gene regulatory enhancers active in the human placenta.
    Zhang J; Simonti CN; Capra JA
    PLoS One; 2018; 13(12):e0209611. PubMed ID: 30589856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancer prediction with histone modification marks using a hybrid neural network model.
    Lim A; Lim S; Kim S
    Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of enhancer regulatory circuit perturbation driven by copy number variations in malignant glioma.
    Xiao J; Jin X; Zhang C; Zou H; Chang Z; Han N; Li X; Zhang Y; Li Y
    Theranostics; 2021; 11(7):3060-3073. PubMed ID: 33537074
    [No Abstract]   [Full Text] [Related]  

  • 11. Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN.
    Zacher B; Michel M; Schwalb B; Cramer P; Tresch A; Gagneur J
    PLoS One; 2017; 12(1):e0169249. PubMed ID: 28056037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence based prediction of enhancer regions from DNA random walk.
    Singh AP; Mishra S; Jabin S
    Sci Rep; 2018 Oct; 8(1):15912. PubMed ID: 30374023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational schemes for the prediction and annotation of enhancers from epigenomic assays.
    Whitaker JW; Nguyen TT; Zhu Y; Wildberg A; Wang W
    Methods; 2015 Jan; 72():86-94. PubMed ID: 25461775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating diverse datasets improves developmental enhancer prediction.
    Erwin GD; Oksenberg N; Truty RM; Kostka D; Murphy KK; Ahituv N; Pollard KS; Capra JA
    PLoS Comput Biol; 2014 Jun; 10(6):e1003677. PubMed ID: 24967590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress and challenges in bioinformatics approaches for enhancer identification.
    Kleftogiannis D; Kalnis P; Bajic VB
    Brief Bioinform; 2016 Nov; 17(6):967-979. PubMed ID: 26634919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive revisit of the machine-learning tools developed for the identification of enhancers in the human genome.
    Phan LT; Oh C; He T; Manavalan B
    Proteomics; 2023 Jul; 23(13-14):e2200409. PubMed ID: 37021401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases.
    Marbach D; Lamparter D; Quon G; Kellis M; Kutalik Z; Bergmann S
    Nat Methods; 2016 Apr; 13(4):366-70. PubMed ID: 26950747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers.
    Nagari A; Murakami S; Malladi VS; Kraus WL
    Methods Mol Biol; 2017; 1468():121-38. PubMed ID: 27662874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward predictive R-loop computational biology: genome-scale prediction of R-loops reveals their association with complex promoter structures, G-quadruplexes and transcriptionally active enhancers.
    Kuznetsov VA; Bondarenko V; Wongsurawat T; Yenamandra SP; Jenjaroenpun P
    Nucleic Acids Res; 2018 Sep; 46(15):7566-7585. PubMed ID: 29945198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards genome-wide prediction and characterization of enhancers in plants.
    Marand AP; Zhang T; Zhu B; Jiang J
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):131-139. PubMed ID: 27321818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.