These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32444027)

  • 1. Re: Stenger et al.: Focus on the optic nerve head in spaceflight-associated neuro-ocular syndrome (Ophthalmology. 2019;126:1604-1606).
    Wostyn P
    Ophthalmology; 2020 Jun; 127(6):e40-e41. PubMed ID: 32444027
    [No Abstract]   [Full Text] [Related]  

  • 2. Focus on the Optic Nerve Head in Spaceflight-Associated Neuro-ocular Syndrome.
    Stenger MB; Laurie SS; Sadda SR; Sadun AA; Macias BR; Huang AS
    Ophthalmology; 2019 Dec; 126(12):1604-1606. PubMed ID: 31759496
    [No Abstract]   [Full Text] [Related]  

  • 3. Optical Coherence Tomographic Analysis of the Optic Nerve Head and Surrounding Structures in Space Flight-Associated Neuro-ocular Syndrome.
    Lee AG
    JAMA Ophthalmol; 2018 Feb; 136(2):200-201. PubMed ID: 29327046
    [No Abstract]   [Full Text] [Related]  

  • 4. Reply to Wostyn et al.: Investigating the spaceflight-associated neuro-ocular syndrome and the human brain in lockstep.
    Van Ombergen A; Jillings S; Tomilovskaya E; Wuyts FL; Zu Eulenburg P
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15772-15773. PubMed ID: 31363045
    [No Abstract]   [Full Text] [Related]  

  • 5. Brain Physiological Response and Adaptation During Spaceflight.
    Marshall-Goebel K; Damani R; Bershad EM
    Neurosurgery; 2019 Nov; 85(5):E815-E821. PubMed ID: 31215633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of spaceflight-associated neuro-ocular syndrome (SANS).
    Mader TH; Gibson CR; Miller NR; Subramanian PS; Patel NB; Lee AG
    Neurol India; 2019; 67(Supplement):S206-S211. PubMed ID: 31134911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re: Wåhlin et al.: Optic nerve length before and after spaceflight (Ophthalmology. 2021;128:309-316).
    Wostyn P; Gibson CR; Mader TH
    Ophthalmology; 2021 May; 128(5):e27-e28. PubMed ID: 33551288
    [No Abstract]   [Full Text] [Related]  

  • 8. The buffering capacity of the brain and optic nerve against spaceflight-associated neuro-ocular syndrome.
    Wostyn P; Mader TH; Gibson CR; De Deyn PP
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15770-15771. PubMed ID: 31363044
    [No Abstract]   [Full Text] [Related]  

  • 9. Dilated Prelaminar Paravascular Spaces as a Possible Mechanism for Optic Disc Edema in Astronauts.
    Wostyn P; De Winne F; Stern C; De Deyn PP
    Aerosp Med Hum Perform; 2018 Dec; 89(12):1089-1091. PubMed ID: 30487031
    [No Abstract]   [Full Text] [Related]  

  • 10. The Possible Role of Elastic Properties of the Brain and Optic Nerve Sheath in the Development of Spaceflight-Associated Neuro-Ocular Syndrome.
    Wostyn P; Mader TH; Gibson CR; Wuyts FL; Van Ombergen A; Zu Eulenburg P; De Deyn PP
    AJNR Am J Neuroradiol; 2020 Mar; 41(3):E14-E15. PubMed ID: 32079600
    [No Abstract]   [Full Text] [Related]  

  • 11. [From human terrestrial models to new preventive measures for ocular changes in astronauts : Results of the German Aerospace Center studies].
    Jordan J; Hellweg CE; Mulder E; Stern C
    Ophthalmologe; 2020 Aug; 117(8):740-745. PubMed ID: 32519116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aetiology of spaceflight-associated neuro-ocular syndrome might be explained by a neural mechanism regulating intraocular pressure.
    Jaki Mekjavic P; Amoaku W; Mlinar T; Mekjavic IB
    J Physiol; 2020 Apr; 598(8):1431-1432. PubMed ID: 32118293
    [No Abstract]   [Full Text] [Related]  

  • 13. The Importance of the Intracranial Compartment in the Development of Spaceflight-Associated Neuro-ocular Syndrome-Reply.
    Marshall-Goebel K; Kramer LA; Macias BR
    JAMA Ophthalmol; 2022 Jan; 140(1):99-100. PubMed ID: 34817558
    [No Abstract]   [Full Text] [Related]  

  • 14. Reply to Wostyn et al.: Potential models for perivascular space (PVS) enlargement and spaceflight-associated neuro-ocular syndrome (SANS).
    Barisano G; Tomilovskaya E; Roberts DR; Wuyts FL
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2208241119. PubMed ID: 35858379
    [No Abstract]   [Full Text] [Related]  

  • 15. Reply to: Response to "Measuring the Optic Nerve Sheath Diameter with Ultrasound in Acute Middle Cerebral Artery Stroke Patients": For Application to Long-Duration Spaceflight (LDSF).
    Güzeldağ S; Yılmaz G
    J Stroke Cerebrovasc Dis; 2021 Apr; 30(4):105634. PubMed ID: 33495055
    [No Abstract]   [Full Text] [Related]  

  • 16. Gravitational Influence on Intraocular Pressure: Implications for Spaceflight and Disease.
    Huang AS; Stenger MB; Macias BR
    J Glaucoma; 2019 Aug; 28(8):756-764. PubMed ID: 31162175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spaceflight-Induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures.
    Zhang LF; Hargens AR
    Physiol Rev; 2018 Jan; 98(1):59-87. PubMed ID: 29167331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optic Nerve Tortuosity on Earth and in Space.
    Scott RA; Tarver WJ; Brunstetter TJ; Urquieta E
    Aerosp Med Hum Perform; 2020 Feb; 91(2):91-97. PubMed ID: 31980047
    [No Abstract]   [Full Text] [Related]  

  • 19. Neuro-Ophthalmology of Space Flight.
    Lee AG; Tarver WJ; Mader TH; Gibson CR; Hart SF; Otto CA
    J Neuroophthalmol; 2016 Mar; 36(1):85-91. PubMed ID: 26828842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Space flight-associated neuro-ocular syndrome (SANS).
    Lee AG; Mader TH; Gibson CR; Brunstetter TJ; Tarver WJ
    Eye (Lond); 2018 Jul; 32(7):1164-1167. PubMed ID: 29527011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.