BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32444653)

  • 21. Direct DME synthesis on CZZ/H-FER from variable CO
    Wild S; Polierer S; Zevaco TA; Guse D; Kind M; Pitter S; Herrera Delgado K; Sauer J
    RSC Adv; 2021 Jan; 11(5):2556-2564. PubMed ID: 35424220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al
    Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X
    ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism and catalytic performance for direct dimethyl ether synthesis by CO
    Sheng Q; Ye RP; Gong W; Shi X; Xu B; Argyle M; Adidharma H; Fan M
    J Environ Sci (China); 2020 Jun; 92():106-117. PubMed ID: 32430113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.
    An K; Zhang Q; Alayoglu S; Musselwhite N; Shin JY; Somorjai GA
    Nano Lett; 2014 Aug; 14(8):4907-12. PubMed ID: 25078630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modified natural kaolin clay as an active, selective, and stable catalyst for methanol dehydration to dimethyl ether.
    El-Aal MA; Said AEA; Abdallah MH; Goda MN
    Sci Rep; 2022 Jun; 12(1):9407. PubMed ID: 35672397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From CO
    Kubas D; Beck JM; Kasisari E; Schätzler T; Becherer A; Fischer A; Krossing I
    ACS Omega; 2023 May; 8(17):15203-15216. PubMed ID: 37151500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Kinetic Model Considering Catalyst Deactivation for Methanol-to-Dimethyl Ether on a Biomass-Derived Zr/P-Carbon Catalyst.
    Torres-Liñán J; Ruiz-Rosas R; Rosas JM; Rodríguez-Mirasol J; Cordero T
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-thin ZrO
    Fan X; Jin B; He X; Li S; Liang X
    Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36857761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methanol Conversion into Dimethyl Ether on the Anatase TiO2(001) Surface.
    Xiong F; Yu YY; Wu Z; Sun G; Ding L; Jin Y; Gong XQ; Huang W
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):623-8. PubMed ID: 26593777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of Different Si- and Al-based Catalysts with Pd Modification and Their Use for Catalytic Dehydration of Ethanol.
    Kamsuwan T; Jongsomjit B
    J Oleo Sci; 2018; 67(8):1005-1014. PubMed ID: 30068826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acid Mesoporous Carbon Monoliths from Lignocellulosic Biomass Waste for Methanol Dehydration.
    Ibeh PO; García-Mateos FJ; Ruiz-Rosas R; Rosas JM; Rodríguez-Mirasol J; Cordero T
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31357532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diethyl Ether Production during Catalytic Dehydration of Ethanol over Ru- and Pt- modified H-beta Zeolite Catalysts.
    Kamsuwan T; Praserthdam P; Jongsomjit B
    J Oleo Sci; 2017; 66(2):199-207. PubMed ID: 28154350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative study on the Mn/TiO
    Zhang Y; Huang T; Xiao R; Xu H; Shen K; Zhou C
    Environ Technol; 2018 May; 39(10):1284-1294. PubMed ID: 28504006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Zeolite Features on the Dehydration Reaction of Methanol to Dimethyl Ether: Catalytic Behaviour and Kinetics.
    Catizzone E; Giglio E; Migliori M; Cozzucoli PC; Giordano G
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33297548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodiesel production from sewage sludge using supported heteropolyacid as heterogeneous acid catalyst.
    Patiño Y; Faba L; Díaz E; Ordóñez S
    J Environ Manage; 2024 Jul; 365():121643. PubMed ID: 38968894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.
    Viswanadham B; Srikanth A; Kumar VP; Chary KV
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5391-402. PubMed ID: 26373149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Situ FT-IR Characterization of CuZnZr/Ferrierite Hybrid Catalysts for One-Pot CO₂-to-DME Conversion.
    Miletto I; Catizzone E; Bonura G; Ivaldi C; Migliori M; Gianotti E; Marchese L; Frusteri F; Giordano G
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30441800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of the conversion of methanol to dimethyl ether on zeolite HZSM-5 using in situ flow MAS NMR.
    Carlson LK; Isbester PK; Munson EJ
    Solid State Nucl Magn Reson; 2000 May; 16(1-2):93-102. PubMed ID: 10811434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diethyl Ether Conversion to Ethene and Ethanol Catalyzed by Heteropoly Acids.
    Al-Faze R; Kozhevnikova EF; Kozhevnikov IV
    ACS Omega; 2021 Apr; 6(13):9310-9318. PubMed ID: 33842800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CO2 hydrogenation to methanol on supported Au catalysts under moderate reaction conditions: support and particle size effects.
    Hartadi Y; Widmann D; Behm RJ
    ChemSusChem; 2015 Feb; 8(3):456-65. PubMed ID: 25339625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.