These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32444769)

  • 21. Sequence-Independent Traceless Method for Preparation of Peptide/Protein Thioesters Using CPaseY-Mediated Hydrazinolysis.
    Ueda M; Komiya C; Arii S; Kusumoto K; Denda M; Okuhira K; Shigenaga A; Otaka A
    Chem Pharm Bull (Tokyo); 2020 Dec; 68(12):1226-1232. PubMed ID: 33028801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical analysis of the detailed mechanism of native chemical ligation reactions.
    Wang C; Guo QX; Fu Y
    Chem Asian J; 2011 May; 6(5):1241-51. PubMed ID: 21365769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfanylmethyldimethylaminopyridine as a Useful Thiol Additive for Ligation Chemistry in Peptide/Protein Synthesis.
    Ohkawachi K; Kobayashi D; Morimoto K; Shigenaga A; Denda M; Yamatsugu K; Kanai M; Otaka A
    Org Lett; 2020 Jul; 22(14):5289-5293. PubMed ID: 32396369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide and Protein Desulfurization with Diboron Reagents.
    Jing R; Walczak MA
    Org Lett; 2024 Apr; 26(13):2590-2595. PubMed ID: 38517348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel thiol-labile cysteine protecting group for peptide synthesis based on a pyridazinedione (PD) scaffold.
    Spears RJ; McMahon C; Shamsabadi M; Bahou C; Thanasi IA; Rochet LNC; Forte N; Thoreau F; Baker JR; Chudasama V
    Chem Commun (Camb); 2022 Jan; 58(5):645-648. PubMed ID: 34747956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protection of a single-cysteine redox switch from oxidative destruction: On the functional role of sulfenyl amide formation in the redox-regulated enzyme PTP1B.
    Sivaramakrishnan S; Cummings AH; Gates KS
    Bioorg Med Chem Lett; 2010 Jan; 20(2):444-7. PubMed ID: 20015650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acyl donors for native chemical ligation.
    Yan B; Shi W; Ye L; Liu L
    Curr Opin Chem Biol; 2018 Oct; 46():33-40. PubMed ID: 29654943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide Hydrazides as Thioester Equivalents for the Chemical Synthesis of Proteins.
    Wang Y; Li YM
    Methods Mol Biol; 2020; 2133():119-140. PubMed ID: 32144665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-pot/sequential native chemical ligation using N-sulfanylethylanilide peptide.
    Otaka A; Sato K; Ding H; Shigenaga A
    Chem Rec; 2012 Oct; 12(5):479-90. PubMed ID: 22927228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein engineering with the traceless Staudinger ligation.
    Tam A; Raines RT
    Methods Enzymol; 2009; 462():25-44. PubMed ID: 19632468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass Spectrometry-Based Method for Detection and Identification of Free Thiol Groups in Proteins.
    Solecka-Witulska BA; Weise C; Kannicht C
    Methods Mol Biol; 2019; 1934():179-189. PubMed ID: 31256380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives.
    Kawulka KE; Sprules T; Diaper CM; Whittal RM; McKay RT; Mercier P; Zuber P; Vederas JC
    Biochemistry; 2004 Mar; 43(12):3385-95. PubMed ID: 15035610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative display of the redox status of proteins with maleimide-polyethylene glycol tagging.
    Lee YJ; Chang GD
    Electrophoresis; 2019 Feb; 40(4):491-498. PubMed ID: 30511403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization.
    Yan LZ; Dawson PE
    J Am Chem Soc; 2001 Jan; 123(4):526-33. PubMed ID: 11456564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determining the Redox Potential of a Protein Disulphide Bond.
    Cook KM
    Methods Mol Biol; 2019; 1967():65-86. PubMed ID: 31069765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct synthesis of cyclic lipopeptides using intramolecular native chemical ligation and thiol-ene CLipPA chemistry.
    Yim VV; Kavianinia I; Cameron AJ; Harris PWR; Brimble MA
    Org Biomol Chem; 2020 Apr; 18(15):2838-2844. PubMed ID: 32048704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the acid/base and redox chemistry of phytochelatin analogue peptides.
    Spain SM; Rabenstein DL
    Anal Chem; 2003 Aug; 75(15):3712-9. PubMed ID: 14572034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From protein total synthesis to peptide transamidation and metathesis: playing with the reversibility of N,S-acyl or N,Se-acyl migration reactions.
    Melnyk O; Agouridas V
    Curr Opin Chem Biol; 2014 Oct; 22():137-45. PubMed ID: 25438800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accessing posttranslationally modified proteins through thiol positioning.
    Kumar KS; Brik A
    J Pept Sci; 2010 Oct; 16(10):524-9. PubMed ID: 20862719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.