These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32444769)

  • 41. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selenolysine: A New Tool for Traceless Isopeptide Bond Formation.
    Dardashti RN; Kumar S; Sternisha SM; Reddy PS; Miller BG; Metanis N
    Chemistry; 2020 Apr; 26(22):4952-4957. PubMed ID: 31960982
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rethinking Cysteine Protective Groups: S-Alkylsulfonyl-l-Cysteines for Chemoselective Disulfide Formation.
    Schäfer O; Huesmann D; Muhl C; Barz M
    Chemistry; 2016 Dec; 22(50):18085-18091. PubMed ID: 27797427
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thiol-Disulfide Exchange Reactions in the Mammalian Extracellular Environment.
    Yi MC; Khosla C
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():197-222. PubMed ID: 27023663
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent extensions to native chemical ligation for the chemical synthesis of peptides and proteins.
    Malins LR; Payne RJ
    Curr Opin Chem Biol; 2014 Oct; 22():70-8. PubMed ID: 25285753
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct determination of the redox status of cysteine residues in proteins in vivo.
    Hara S; Tatenaka Y; Ohuchi Y; Hisabori T
    Biochem Biophys Res Commun; 2015 Jan; 456(1):339-43. PubMed ID: 25436431
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Factors affecting protein thiol reactivity and specificity in peroxide reduction.
    Ferrer-Sueta G; Manta B; Botti H; Radi R; Trujillo M; Denicola A
    Chem Res Toxicol; 2011 Apr; 24(4):434-50. PubMed ID: 21391663
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enabling N-to-C Ser/Thr Ligation for Convergent Protein Synthesis via Combining Chemical Ligation Approaches.
    Lee CL; Liu H; Wong CT; Chow HY; Li X
    J Am Chem Soc; 2016 Aug; 138(33):10477-84. PubMed ID: 27479006
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Internal Activation of Peptidyl Prolyl Thioesters in Native Chemical Ligation.
    Gui Y; Qiu L; Li Y; Li H; Dong S
    J Am Chem Soc; 2016 Apr; 138(14):4890-9. PubMed ID: 26982082
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 2-nitroveratryl as a photocleavable thiol-protecting group for directed disulfide bond formation in the chemical synthesis of insulin.
    Karas JA; Scanlon DB; Forbes BE; Vetter I; Lewis RJ; Gardiner J; Separovic F; Wade JD; Hossain MA
    Chemistry; 2014 Jul; 20(31):9549-52. PubMed ID: 24957739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thiol Catalysis of Selenosulfide Bond Cleavage by a Triarylphosphine.
    Firstova O; Melnyk O; Diemer V
    J Org Chem; 2022 Jul; 87(14):9426-9430. PubMed ID: 35763672
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The thiol of human serum albumin: Acidity, microenvironment and mechanistic insights on its oxidation to sulfenic acid.
    Bonanata J; Turell L; Antmann L; Ferrer-Sueta G; Botasini S; Méndez E; Alvarez B; Coitiño EL
    Free Radic Biol Med; 2017 Jul; 108():952-962. PubMed ID: 28438657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemoselective Dual Labeling of Native and Recombinant Proteins.
    Agrawalla BK; Wang T; Riegger A; Domogalla MP; Steinbrink K; Dörfler T; Chen X; Boldt F; Lamla M; Michaelis J; Kuan SL; Weil T
    Bioconjug Chem; 2018 Jan; 29(1):29-34. PubMed ID: 29231709
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein cysteine modifications: (1) medical chemistry for proteomics.
    Nagahara N; Matsumura T; Okamoto R; Kajihara Y
    Curr Med Chem; 2009; 16(33):4419-44. PubMed ID: 19835564
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A statistical view of protein chemical synthesis using NCL and extended methodologies.
    Agouridas V; El Mahdi O; Cargoët M; Melnyk O
    Bioorg Med Chem; 2017 Sep; 25(18):4938-4945. PubMed ID: 28578993
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Features of Auxiliaries That Enable Native Chemical Ligation beyond Glycine and Cleavage via Radical Fragmentation.
    Loibl SF; Dallmann A; Hennig K; Juds C; Seitz O
    Chemistry; 2018 Mar; 24(14):3623-3633. PubMed ID: 29334413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neutral thiol as a proximal ligand to ferrous heme iron: implications for heme proteins that lose cysteine thiolate ligation on reduction.
    Perera R; Sono M; Sigman JA; Pfister TD; Lu Y; Dawson JH
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3641-6. PubMed ID: 12655049
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct NMR observation of the Cys-14 thiol proton of reduced Escherichia coli glutaredoxin-3 supports the presence of an active site thiol-thiolate hydrogen bond.
    Nordstrand K; Aslund F; Meunier S; Holmgren A; Otting G; Berndt KD
    FEBS Lett; 1999 Apr; 449(2-3):196-200. PubMed ID: 10338131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Precise Protein Semisynthesis through Ligation-Desulfurization Chemistry in Combination with Phenacyl Protection of Native Cysteines.
    Mukherjee S; Matveenko M; Becker CFW
    Methods Mol Biol; 2020; 2133():343-358. PubMed ID: 32144676
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thiocholine-Mediated One-Pot Peptide Ligation and Desulfurization.
    Suzuki S; Nakajima Y; Kamo N; Osakabe A; Okamoto A; Hayashi G; Murakami H
    Molecules; 2023 Apr; 28(9):. PubMed ID: 37175065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.