These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32444809)

  • 1. Complete sleep and local field potential analysis regarding estrus cycle, pregnancy, postpartum and post-weaning periods and homeostatic sleep regulation in female rats.
    Tóth A; Pethő M; Keserű D; Simon D; Hajnik T; Détári L; Dobolyi Á
    Sci Rep; 2020 May; 10(1):8546. PubMed ID: 32444809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep and local field potential effect of the D2 receptor agonist bromocriptine during the estrus cycle and postpartum period in female rats.
    Tóth A; Keserű D; Pethő M; Détári L; Bencsik N; Dobolyi Á; Hajnik T
    Pharmacol Biochem Behav; 2024 Jun; 239():173754. PubMed ID: 38537873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A descriptive analysis of sleep and wakefulness states during maternal behaviors in postpartum rats.
    Benedetto L; Rivas M; Pereira M; Ferreira A; Torterolo P
    Arch Ital Biol; 2017 Sep; 155(3):99-109. PubMed ID: 29220862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic changes in sleep pattern during post-partum in normal pregnancy in rat model.
    Sivadas N; Radhakrishnan A; Aswathy BS; Kumar VM; Gulia KK
    Behav Brain Res; 2017 Mar; 320():264-274. PubMed ID: 27899291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the 5-HT₆ receptor antagonists SB-399885 and RO-4368554 and of the 5-HT(2A) receptor antagonist EMD 281014 on sleep and wakefulness in the rat during both phases of the light-dark cycle.
    Monti JM; Jantos H
    Behav Brain Res; 2011 Jan; 216(1):381-8. PubMed ID: 20732355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study.
    Braun AR; Balkin TJ; Wesenten NJ; Carson RE; Varga M; Baldwin P; Selbie S; Belenky G; Herscovitch P
    Brain; 1997 Jul; 120 ( Pt 7)():1173-97. PubMed ID: 9236630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis.
    Martinez-Gonzalez D; Lesku JA; Rattenborg NC
    J Sleep Res; 2008 Jun; 17(2):140-53. PubMed ID: 18321247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness.
    Thakkar MM; Engemann SC; Walsh KM; Sahota PK
    Neuroscience; 2008 Jun; 153(4):875-80. PubMed ID: 18440150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep Homeostatic and Waking Behavioral Phenotypes in
    Grønli J; Clegern WC; Schmidt MA; Nemri RS; Rempe MJ; Gallitano AL; Wisor JP
    Sleep; 2016 Dec; 39(12):2189-2199. PubMed ID: 28057087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep homeostasis in the female rat during the estrous cycle.
    Schwierin B; Borbély AA; Tobler I
    Brain Res; 1998 Nov; 811(1-2):96-104. PubMed ID: 9804908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gamma band directional interactions between basal forebrain and visual cortex during wake and sleep states.
    Nair J; Klaassen AL; Poirot J; Vyssotski A; Rasch B; Rainer G
    J Physiol Paris; 2016 Sep; 110(1-2):19-28. PubMed ID: 27913167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow-wave sleep deficiency and enhancement: implications for insomnia and its management.
    Dijk DJ
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():22-8. PubMed ID: 20509829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase.
    Trachsel L; Tobler I; Borbély AA
    Am J Physiol; 1986 Dec; 251(6 Pt 2):R1037-44. PubMed ID: 3789191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a 25-h sleep deprivation on daytime sleep in the middle-aged.
    Gaudreau H; Morettini J; Lavoie HB; Carrier J
    Neurobiol Aging; 2001; 22(3):461-8. PubMed ID: 11378253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platform sleep deprivation affects deep slow wave sleep in addition to REM sleep.
    Grahnstedt S; Ursin R
    Behav Brain Res; 1985 Dec; 18(3):233-9. PubMed ID: 4091961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex- and Age-dependent Differences in Sleep-wake Characteristics of Fisher-344 Rats.
    Kostin A; Alam MA; Siegel JM; McGinty D; Alam MN
    Neuroscience; 2020 Feb; 427():29-42. PubMed ID: 31846749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.
    Perrault R; Carrier J; Desautels A; Montplaisir J; Zadra A
    J Sleep Res; 2013 Aug; 22(4):430-3. PubMed ID: 23398262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consolidation of strictly episodic memories mainly requires rapid eye movement sleep.
    Rauchs G; Bertran F; Guillery-Girard B; Desgranges B; Kerrouche N; Denise P; Foret J; Eustache F
    Sleep; 2004 May; 27(3):395-401. PubMed ID: 15164890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre- and post-natal protein malnutrition alters the effect of rapid eye movements sleep-deprivation by the platform-technique upon the electrocorticogram of the circadian sleep-wake cycle and its frequency bands in the rat.
    Cintra L; Durán P; Guevara MA; Aguilar A; Castañón-Cervantes O
    Nutr Neurosci; 2002 Apr; 5(2):91-101. PubMed ID: 12000087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term effects of a tryptophan-free diet on serotonin metabolism and sleep-waking balance in rats.
    Lanoir J; Ternaux JP; Pons C; Lagarde JM
    Exp Brain Res; 1981; 41(3-4):346-57. PubMed ID: 6163653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.