These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32444809)

  • 21. Long-term effects of a tryptophan-free diet on serotonin metabolism and sleep-waking balance in rats.
    Lanoir J; Ternaux JP; Pons C; Lagarde JM
    Exp Brain Res; 1981; 41(3-4):346-57. PubMed ID: 6163653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blockage of dopaminergic D(2) receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation.
    Lima MM; Andersen ML; Reksidler AB; Silva A; Zager A; Zanata SM; Vital MA; Tufik S
    Behav Brain Res; 2008 Apr; 188(2):406-11. PubMed ID: 18201777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predator-induced plasticity in sleep architecture in wild-caught Norway rats (Rattus norvegicus).
    Lesku JA; Bark RJ; Martinez-Gonzalez D; Rattenborg NC; Amlaner CJ; Lima SL
    Behav Brain Res; 2008 Jun; 189(2):298-305. PubMed ID: 18313152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in sleep patterns of young women from late pregnancy to postpartum: relationships to their infants' movements.
    Nishihara K; Horiuchi S
    Percept Mot Skills; 1998 Dec; 87(3 Pt 1):1043-56. PubMed ID: 9885077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle.
    Lee RS; Steffensen SC; Henriksen SJ
    J Neurosci; 2001 Mar; 21(5):1757-66. PubMed ID: 11222665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered brain perfusion patterns in wakefulness and slow-wave sleep in sleepwalkers.
    Desjardins MÈ; Baril AA; Soucy JP; Dang-Vu TT; Desautels A; Petit D; Montplaisir J; Zadra A
    Sleep; 2018 May; 41(5):. PubMed ID: 29514303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upper airway dilating forces during wakefulness and sleep in dogs.
    Goh AS; Issa FG; Sullivan CE
    J Appl Physiol (1985); 1986 Dec; 61(6):2148-55. PubMed ID: 3804921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ventilatory and arousal responses to hypoxia and hypercapnia in a canine model of obstructive sleep apnea.
    Kimoff RJ; Brooks D; Horner RL; Kozar LF; Render-Teixeira CL; Champagne V; Mayer P; Phillipson EA
    Am J Respir Crit Care Med; 1997 Sep; 156(3 Pt 1):886-94. PubMed ID: 9310009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in sleep-wake cycle during the period from late pregnancy to puerperium identified through the wrist actigraph and sleep logs.
    Shinkoda H; Matsumoto K; Park YM
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):133-5. PubMed ID: 10459670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The time course of slow wave sleep and REM sleep in habitual long and short sleepers: effect of prior wakefulness.
    Benoit O; Foret J; Bouard G
    Hum Neurobiol; 1983; 2(2):91-6. PubMed ID: 6629878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The relationship between frequency of rapid eye movements in REM sleep and SWS rebound.
    De Gennaro L; Ferrara M; Bertini M
    J Sleep Res; 2000 Jun; 9(2):155-9. PubMed ID: 10849242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spindle and slow wave rhythms at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential.
    Marshall L; Mölle M; Born J
    Neuroscience; 2003; 121(4):1047-53. PubMed ID: 14580954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sleep in human narcolepsy revisited with special reference to prior wakefulness duration.
    Tafti M; Villemin E; Carlander B; Besset A; Billiard M
    Sleep; 1992 Aug; 15(4):344-51. PubMed ID: 1519010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preoptic area unit activity during sleep and wakefulness in the cat.
    Kaitin KI
    Exp Neurol; 1984 Feb; 83(2):347-57. PubMed ID: 6692872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accumbal dopamine function in postpartum rats that were raised without their mothers.
    Afonso VM; King SJ; Novakov M; Burton CL; Fleming AS
    Horm Behav; 2011 Nov; 60(5):632-43. PubMed ID: 21964046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The organization of sleep and wakefulness after maternal separation in young rats.
    Hofer MA
    Dev Psychobiol; 1976 Mar; 9(2):189-205. PubMed ID: 964463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arvicanthis ansorgei, a Novel Model for the Study of Sleep and Waking in Diurnal Rodents.
    Hubbard J; Ruppert E; Calvel L; Robin-Choteau L; Gropp CM; Allemann C; Reibel S; Sage-Ciocca D; Bourgin P
    Sleep; 2015 Jun; 38(6):979-88. PubMed ID: 25409107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.
    Blanco W; Pereira CM; Cota VR; Souza AC; Rennó-Costa C; Santos S; Dias G; Guerreiro AM; Tort AB; Neto AD; Ribeiro S
    PLoS Comput Biol; 2015 May; 11(5):e1004241. PubMed ID: 26020963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced cortical responsiveness during natural sleep in freely behaving mice.
    Matsumoto S; Ohyama K; Díaz J; Yanagisawa M; Greene RW; Vogt KE
    Sci Rep; 2020 Feb; 10(1):2278. PubMed ID: 32042079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.