These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32444856)

  • 1. Tunable optical and magneto-optical Faraday and Kerr rotations in a dielectric slab doped with double-V type atoms.
    Vafafard A; Sahrai M
    Sci Rep; 2020 May; 10(1):8544. PubMed ID: 32444856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colossal magneto-optical modulation at terahertz frequencies by counterpropagating femtosecond laser pulses in Tb
    Mikhaylovskiy RV; Subkhangulov RR; Rasing T; Kimel AV
    Opt Lett; 2016 Nov; 41(21):5071-5073. PubMed ID: 27805688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.
    Okada KN; Takahashi Y; Mogi M; Yoshimi R; Tsukazaki A; Takahashi KS; Ogawa N; Kawasaki M; Tokura Y
    Nat Commun; 2016 Jul; 7():12245. PubMed ID: 27436710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces.
    Christofi A; Kawaguchi Y; Alù A; Khanikaev AB
    Opt Lett; 2018 Apr; 43(8):1838-1841. PubMed ID: 29652378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of Faraday and Kerr rotations in three-layer heterostructure with extraordinary optical transmission effect.
    Dmitriev V; Paixão F; Kawakatsu M
    Opt Lett; 2013 Apr; 38(7):1052-4. PubMed ID: 23546240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Faraday and Kerr rotations in graphene.
    Shimano R; Yumoto G; Yoo JY; Matsunaga R; Tanabe S; Hibino H; Morimoto T; Aoki H
    Nat Commun; 2013; 4():1841. PubMed ID: 23673626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant Faraday and Kerr rotation with strained graphene.
    Martinez JC; Jalil MB; Tan SG
    Opt Lett; 2012 Aug; 37(15):3237-9. PubMed ID: 22859144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magneto-optical effects in the Landau level manifold of 2D lattices with spin-orbit interaction.
    Shah M; Anwar MS
    Opt Express; 2019 Aug; 27(16):23217-23233. PubMed ID: 31510604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced magneto-optical rotation of probe field in thermal medium via spontaneous generated coherence.
    Sultan S; Ali H; Din RU; Khan MI; Amin B; Shafiq M; Sarker MR; Ali SHM
    Sci Rep; 2022 Jun; 12(1):9788. PubMed ID: 35697821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays.
    Lei C; Chen L; Tang Z; Li D; Cheng Z; Tang S; Du Y
    Opt Lett; 2016 Feb; 41(4):729-32. PubMed ID: 26872174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for eliminating Faraday rotation in cryostat windows in longitudinal magneto-optical Kerr effect measurements.
    Polewko-Klim A; Uba S; Uba L
    Rev Sci Instrum; 2014 Jul; 85(7):073106. PubMed ID: 25085126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superluminal pulse reflection and transmission in a slab system doped with dispersive materials.
    Wang LG; Chen H; Zhu SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066602. PubMed ID: 15697521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Both Faraday and Kerr Effects with an All-Dielectric Grating Based on a Magneto-Optical Nanocomposite Material.
    Royer F; Varghese B; Gamet E; Neveu S; Jourlin Y; Jamon D
    ACS Omega; 2020 Feb; 5(6):2886-2892. PubMed ID: 32095710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of external magnetic field and out-of-plane strain on magneto-optical Kerr spectra in CrI
    Guo G; Bi G; Cai C; Wu H
    J Phys Condens Matter; 2018 Jul; 30(28):285303. PubMed ID: 29855429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic description and optimization of magneto-optical Kerr setups with photoelastic modulation.
    Légaré K; Chardonnet V; Bermúdez Macias I; Hennes M; Delaunay R; Lassonde P; Légaré F; Lambert G; Jal E; Vodungbo B
    Rev Sci Instrum; 2022 Jul; 93(7):073001. PubMed ID: 35922312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems.
    Belotelov VI; Doskolovich LL; Zvezdin AK
    Phys Rev Lett; 2007 Feb; 98(7):077401. PubMed ID: 17359058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.
    Széchenyi G; Vigh M; Kormányos A; Cserti J
    J Phys Condens Matter; 2016 Sep; 28(37):375802. PubMed ID: 27420800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation.
    Chin JY; Steinle T; Wehlus T; Dregely D; Weiss T; Belotelov VI; Stritzker B; Giessen H
    Nat Commun; 2013; 4():1599. PubMed ID: 23511464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic field induced nonlinear magneto-optical rotation in a diamond mechanical resonator.
    Ghaderi Goran Abad M; Ashrafizadeh Khalifani F; Mahmoudi M
    Sci Rep; 2020 May; 10(1):8197. PubMed ID: 32424206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New method of second quantization of the strained-graphene Kerr and Faraday rotations.
    Boonchui S; Nualpijit P
    Opt Express; 2019 Sep; 27(20):28350-28363. PubMed ID: 31684588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.