These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
753 related articles for article (PubMed ID: 32445176)
1. Cancer risk management among female BRCA1/2, PALB2, CHEK2, and ATM carriers. Cragun D; Weidner A; Tezak A; Clouse K; Pal T Breast Cancer Res Treat; 2020 Jul; 182(2):421-428. PubMed ID: 32445176 [TBL] [Abstract][Full Text] [Related]
2. Contralateral Breast Cancer Risk Among Carriers of Germline Pathogenic Variants in Yadav S; Boddicker NJ; Na J; Polley EC; Hu C; Hart SN; Gnanaolivu RD; Larson N; Holtegaard S; Huang H; Dunn CA; Teras LR; Patel AV; Lacey JV; Neuhausen SL; Martinez E; Haiman C; Chen F; Ruddy KJ; Olson JE; John EM; Kurian AW; Sandler DP; O'Brien KM; Taylor JA; Weinberg CR; Anton-Culver H; Ziogas A; Zirpoli G; Goldgar DE; Palmer JR; Domchek SM; Weitzel JN; Nathanson KL; Kraft P; Couch FJ J Clin Oncol; 2023 Mar; 41(9):1703-1713. PubMed ID: 36623243 [TBL] [Abstract][Full Text] [Related]
3. Clinical utility of hereditary cancer panel testing: Impact of PALB2, ATM, CHEK2, NBN, BRIP1, RAD51C, and RAD51D results on patient management and adherence to provider recommendations. Vysotskaia V; Kaseniit KE; Bucheit L; Ready K; Price K; Johansen Taber K Cancer; 2020 Feb; 126(3):549-558. PubMed ID: 31682005 [TBL] [Abstract][Full Text] [Related]
4. Association of a Polygenic Risk Score With Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes. Gallagher S; Hughes E; Wagner S; Tshiaba P; Rosenthal E; Roa BB; Kurian AW; Domchek SM; Garber J; Lancaster J; Weitzel JN; Gutin A; Lanchbury JS; Robson M JAMA Netw Open; 2020 Jul; 3(7):e208501. PubMed ID: 32609350 [TBL] [Abstract][Full Text] [Related]
5. Pathogenic and likely pathogenic variants in PALB2, CHEK2, and other known breast cancer susceptibility genes among 1054 BRCA-negative Hispanics with breast cancer. Weitzel JN; Neuhausen SL; Adamson A; Tao S; Ricker C; Maoz A; Rosenblatt M; Nehoray B; Sand S; Steele L; Unzeitig G; Feldman N; Blanco AM; Hu D; Huntsman S; Castillo D; Haiman C; Slavin T; Ziv E Cancer; 2019 Aug; 125(16):2829-2836. PubMed ID: 31206626 [TBL] [Abstract][Full Text] [Related]
7. Radiation Treatment, ATM, BRCA1/2, and CHEK2*1100delC Pathogenic Variants and Risk of Contralateral Breast Cancer. Reiner AS; Robson ME; Mellemkjær L; Tischkowitz M; John EM; Lynch CF; Brooks JD; Boice JD; Knight JA; Teraoka SN; Liang X; Woods M; Shen R; Shore RE; Stram DO; Thomas DC; Malone KE; Bernstein L; Riaz N; Woodward W; Powell S; Goldgar D; Concannon P; ; Bernstein JL J Natl Cancer Inst; 2020 Dec; 112(12):1275-1279. PubMed ID: 32119081 [TBL] [Abstract][Full Text] [Related]
8. Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model. Lee AJ; Cunningham AP; Tischkowitz M; Simard J; Pharoah PD; Easton DF; Antoniou AC Genet Med; 2016 Dec; 18(12):1190-1198. PubMed ID: 27464310 [TBL] [Abstract][Full Text] [Related]
9. Implementation of next-generation sequencing for molecular diagnosis of hereditary breast and ovarian cancer highlights its genetic heterogeneity. Pinto P; Paulo P; Santos C; Rocha P; Pinto C; Veiga I; Pinheiro M; Peixoto A; Teixeira MR Breast Cancer Res Treat; 2016 Sep; 159(2):245-56. PubMed ID: 27553368 [TBL] [Abstract][Full Text] [Related]
10. Frequency of pathogenic germline variants in BRCA1, BRCA2, PALB2, CHEK2 and TP53 in ductal carcinoma in situ diagnosed in women under the age of 50 years. Petridis C; Arora I; Shah V; Megalios A; Moss C; Mera A; Clifford A; Gillett C; Pinder SE; Tomlinson I; Roylance R; Simpson MA; Sawyer EJ Breast Cancer Res; 2019 May; 21(1):58. PubMed ID: 31060593 [TBL] [Abstract][Full Text] [Related]
11. EUS-based Pancreatic Cancer Surveillance in Katona BW; Long JM; Ahmad NA; Attalla S; Bradbury AR; Carpenter EL; Clark DF; Constantino G; Das KK; Domchek SM; Dudzik C; Ebrahimzadeh J; Ginsberg GG; Heiman J; Kochman ML; Maxwell KN; McKenna DB; Powers J; Shah PD; Wangensteen KJ; Rustgi AK Cancer Prev Res (Phila); 2021 Nov; 14(11):1033-1040. PubMed ID: 34341011 [TBL] [Abstract][Full Text] [Related]
12. Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals. Kuusisto KM; Bebel A; Vihinen M; Schleutker J; Sallinen SL Breast Cancer Res; 2011 Feb; 13(1):R20. PubMed ID: 21356067 [TBL] [Abstract][Full Text] [Related]
13. Comparison of BRCA versus non-BRCA germline mutations and associated somatic mutation profiles in patients with unselected breast cancer. Chen B; Zhang G; Li X; Ren C; Wang Y; Li K; Mok H; Cao L; Wen L; Jia M; Li C; Guo L; Wei G; Lin J; Li Y; Zhang Y; Han-Zhang H; Liu J; Lizaso A; Liao N Aging (Albany NY); 2020 Feb; 12(4):3140-3155. PubMed ID: 32091409 [TBL] [Abstract][Full Text] [Related]
14. Breast Cancer Screening Strategies for Women With ATM, CHEK2, and PALB2 Pathogenic Variants: A Comparative Modeling Analysis. Lowry KP; Geuzinge HA; Stout NK; Alagoz O; Hampton J; Kerlikowske K; de Koning HJ; Miglioretti DL; van Ravesteyn NT; Schechter C; Sprague BL; Tosteson ANA; Trentham-Dietz A; Weaver D; Yaffe MJ; Yeh JM; Couch FJ; Hu C; Kraft P; Polley EC; Mandelblatt JS; Kurian AW; Robson ME; JAMA Oncol; 2022 Apr; 8(4):587-596. PubMed ID: 35175286 [TBL] [Abstract][Full Text] [Related]
15. Diagnosis, Management, and Surveillance for Patients With PALB2, CHEK2, and ATM Gene Mutations. Fencer MG; Krupa KA; Bleich GC; Grumet S; Eladoumikdachi FG; Kumar S; Kowzun MJ; Potdevin LB Clin Breast Cancer; 2023 Jun; 23(4):e194-e199. PubMed ID: 36966080 [TBL] [Abstract][Full Text] [Related]
16. Timing of genetic testing in BRCA1/2 and PALB2-Associated breast cancer: Preoperative result disclosure increases uptake of risk-reducing mastectomy and reduces unnecessary exposure to radiotherapy. Apostolova C; Ferroum A; Alhassan B; Prakash I; Basik M; Boileau JF; Martel K; Meterissian S; Villareal Corpuz V; Wong N; Foulkes WD; Wong SM Eur J Surg Oncol; 2024 Jun; 50(6):108324. PubMed ID: 38636249 [TBL] [Abstract][Full Text] [Related]
17. Frequency of pathogenic germline mutation in CHEK2, PALB2, MRE11, and RAD50 in patients at high risk for hereditary breast cancer. Kim H; Cho DY; Choi DH; Oh M; Shin I; Park W; Huh SJ; Nam SJ; Lee JE; Kim SW Breast Cancer Res Treat; 2017 Jan; 161(1):95-102. PubMed ID: 27783279 [TBL] [Abstract][Full Text] [Related]
18. Clinicopathological Features and Outcomes in Individuals with Breast Cancer and ATM, CHEK2, or PALB2 Mutations. Bergstrom C; Pence C; Berg J; Partain N; Sadeghi N; Mauer C; Pirzadeh-Miller S; Gao A; Li H; Unni N; Syed S Ann Surg Oncol; 2021 Jun; 28(6):3383-3393. PubMed ID: 32996020 [TBL] [Abstract][Full Text] [Related]
19. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Buys SS; Sandbach JF; Gammon A; Patel G; Kidd J; Brown KL; Sharma L; Saam J; Lancaster J; Daly MB Cancer; 2017 May; 123(10):1721-1730. PubMed ID: 28085182 [TBL] [Abstract][Full Text] [Related]
20. Breast Cancer Family History and Contralateral Breast Cancer Risk in Young Women: An Update From the Women's Environmental Cancer and Radiation Epidemiology Study. Reiner AS; Sisti J; John EM; Lynch CF; Brooks JD; Mellemkjær L; Boice JD; Knight JA; Concannon P; Capanu M; Tischkowitz M; Robson M; Liang X; Woods M; Conti DV; Duggan D; Shore R; Stram DO; Thomas DC; Malone KE; Bernstein L; ; Bernstein JL J Clin Oncol; 2018 May; 36(15):1513-1520. PubMed ID: 29620998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]