These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 32445468)

  • 1. Recent advances and potential applications of human pluripotent stem cell-derived pancreatic β cells.
    Zhou Z; Ma X; Zhu S
    Acta Biochim Biophys Sin (Shanghai); 2020 Jul; 52(7):708-715. PubMed ID: 32445468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human pluripotent stem cell based islet models for diabetes research.
    Balboa D; Otonkoski T
    Best Pract Res Clin Endocrinol Metab; 2015 Dec; 29(6):899-909. PubMed ID: 26696518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling different types of diabetes using human pluripotent stem cells.
    Abdelalim EM
    Cell Mol Life Sci; 2021 Mar; 78(6):2459-2483. PubMed ID: 33242105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An arduous journey from human pluripotent stem cells to functional pancreatic β cells.
    Loo LSW; Lau HH; Jasmen JB; Lim CS; Teo AKK
    Diabetes Obes Metab; 2018 Jan; 20(1):3-13. PubMed ID: 28474496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development.
    Millette K; Georgia S
    Curr Diab Rep; 2017 Oct; 17(11):116. PubMed ID: 28980194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes.
    Zhu Z; Li QV; Lee K; Rosen BP; González F; Soh CL; Huangfu D
    Cell Stem Cell; 2016 Jun; 18(6):755-768. PubMed ID: 27133796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem cell-based multi-tissue platforms to model human autoimmune diabetes.
    Leavens KF; Alvarez-Dominguez JR; Vo LT; Russ HA; Parent AV
    Mol Metab; 2022 Dec; 66():101610. PubMed ID: 36209784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-cell mitochondria in diabetes mellitus: a missing puzzle piece in the generation of hPSC-derived pancreatic β-cells?
    Diane A; Al-Shukri NA; Bin Abdul Mu-U-Min R; Al-Siddiqi HH
    J Transl Med; 2022 Apr; 20(1):163. PubMed ID: 35397560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concise Review: Human Pluripotent Stem Cells for the Modeling of Pancreatic β-Cell Pathology.
    Balboa D; Saarimäki-Vire J; Otonkoski T
    Stem Cells; 2019 Jan; 37(1):33-41. PubMed ID: 30270471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering-inspired approaches to study β-cell function and diabetes.
    Lewis PL; Wells JM
    Stem Cells; 2021 May; 39(5):522-535. PubMed ID: 33497522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets.
    Bose B; Sudheer PS
    Methods Mol Biol; 2016; 1341():257-84. PubMed ID: 25783769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers.
    George MN; Leavens KF; Gadue P
    Front Endocrinol (Lausanne); 2021; 12():682625. PubMed ID: 34149620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The progress of pluripotent stem cell-derived pancreatic β-cells regeneration for diabetic therapy.
    Wang X; Gao M; Wang Y; Zhang Y
    Front Endocrinol (Lausanne); 2022; 13():927324. PubMed ID: 35966093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converting human pluripotent stem cells into beta-cells: recent advances and future challenges.
    Mayhew CN; Wells JM
    Curr Opin Organ Transplant; 2010 Feb; 15(1):54-60. PubMed ID: 19855279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in the Generation of Functional β-cells from Induced Pluripotent Stem Cells As a Cure for Diabetes Mellitus.
    Kalra K; Chandrabose ST; Ramasamy TS; Kasim NHBA
    Curr Drug Targets; 2018; 19(13):1463-1477. PubMed ID: 29874998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ROCKII inhibition promotes the maturation of human pancreatic beta-like cells.
    Ghazizadeh Z; Kao DI; Amin S; Cook B; Rao S; Zhou T; Zhang T; Xiang Z; Kenyon R; Kaymakcalan O; Liu C; Evans T; Chen S
    Nat Commun; 2017 Aug; 8(1):298. PubMed ID: 28824164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical combinations potentiate human pluripotent stem cell-derived 3D pancreatic progenitor clusters toward functional β cells.
    Liu H; Li R; Liao HK; Min Z; Wang C; Yu Y; Shi L; Dan J; Hayek A; Martinez Martinez L; Nuñez Delicado E; Izpisua Belmonte JC
    Nat Commun; 2021 Jun; 12(1):3330. PubMed ID: 34099664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells.
    Kawser Hossain M; Abdal Dayem A; Han J; Kumar Saha S; Yang GM; Choi HY; Cho SG
    Int J Mol Sci; 2016 Feb; 17(2):256. PubMed ID: 26907255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation.
    Bose B; Katikireddy KR; Shenoy PS
    Vitam Horm; 2014; 95():223-48. PubMed ID: 24559920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration.
    Ma X; Zhu S
    Acta Biochim Biophys Sin (Shanghai); 2017 Apr; 49(4):289-301. PubMed ID: 28338772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.