BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 32445620)

  • 1. Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA.
    Kong M; Cutts EE; Pan D; Beuron F; Kaliyappan T; Xue C; Morris EP; Musacchio A; Vannini A; Greene EC
    Mol Cell; 2020 Jul; 79(1):99-114.e9. PubMed ID: 32445620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Basis of an Asymmetric Condensin ATPase Cycle.
    Hassler M; Shaltiel IA; Kschonsak M; Simon B; Merkel F; Thärichen L; Bailey HJ; Macošek J; Bravo S; Metz J; Hennig J; Haering CH
    Mol Cell; 2019 Jun; 74(6):1175-1188.e9. PubMed ID: 31226277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time imaging of DNA loop extrusion by condensin.
    Ganji M; Shaltiel IA; Bisht S; Kim E; Kalichava A; Haering CH; Dekker C
    Science; 2018 Apr; 360(6384):102-105. PubMed ID: 29472443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-loop extruding condensin complexes can traverse one another.
    Kim E; Kerssemakers J; Shaltiel IA; Haering CH; Dekker C
    Nature; 2020 Mar; 579(7799):438-442. PubMed ID: 32132705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The condensin holocomplex cycles dynamically between open and collapsed states.
    Ryu JK; Katan AJ; van der Sluis EO; Wisse T; de Groot R; Haering CH; Dekker C
    Nat Struct Mol Biol; 2020 Dec; 27(12):1134-1141. PubMed ID: 32989304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA polymerases as moving barriers to condensin loop extrusion.
    Brandão HB; Paul P; van den Berg AA; Rudner DZ; Wang X; Mirny LA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20489-20499. PubMed ID: 31548377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism.
    Eeftens JM; Bisht S; Kerssemakers J; Kschonsak M; Haering CH; Dekker C
    EMBO J; 2017 Dec; 36(23):3448-3457. PubMed ID: 29118001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taking cohesin and condensin in context.
    Yuen KC; Gerton JL
    PLoS Genet; 2018 Jan; 14(1):e1007118. PubMed ID: 29370184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMC heterodimer.
    Yoshimura SH; Hizume K; Murakami A; Sutani T; Takeyasu K; Yanagida M
    Curr Biol; 2002 Mar; 12(6):508-13. PubMed ID: 11909539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hold-and-feed mechanism drives directional DNA loop extrusion by condensin.
    Shaltiel IA; Datta S; Lecomte L; Hassler M; Kschonsak M; Bravo S; Stober C; Ormanns J; Eustermann S; Haering CH
    Science; 2022 Jun; 376(6597):1087-1094. PubMed ID: 35653469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells.
    Zhai L; Wang H; Tang W; Liu W; Hao S; Zeng X
    Cell Biol Int; 2011 Jul; 35(7):735-40. PubMed ID: 21395557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin.
    Bürmann F; Basfeld A; Vazquez Nunez R; Diebold-Durand ML; Wilhelm L; Gruber S
    Mol Cell; 2017 Mar; 65(5):861-872.e9. PubMed ID: 28238653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Condensin complexes: understanding loop extrusion one conformational change at a time.
    Cutts EE; Vannini A
    Biochem Soc Trans; 2020 Oct; 48(5):2089-2100. PubMed ID: 33005926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes.
    Kschonsak M; Merkel F; Bisht S; Metz J; Rybin V; Hassler M; Haering CH
    Cell; 2017 Oct; 171(3):588-600.e24. PubMed ID: 28988770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The loading of condensin in the context of chromatin.
    Robellet X; Vanoosthuyse V; Bernard P
    Curr Genet; 2017 Aug; 63(4):577-589. PubMed ID: 27909798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple biophysical model emulates budding yeast chromosome condensation.
    Cheng TM; Heeger S; Chaleil RA; Matthews N; Stewart A; Wright J; Lim C; Bates PA; Uhlmann F
    Elife; 2015 Apr; 4():e05565. PubMed ID: 25922992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A loop extrusion-independent mechanism contributes to condensin I-mediated chromosome shaping.
    Kinoshita K; Tsubota Y; Tane S; Aizawa Y; Sakata R; Takeuchi K; Shintomi K; Nishiyama T; Hirano T
    J Cell Biol; 2022 Mar; 221(3):. PubMed ID: 35045152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome folding through loop extrusion by SMC complexes.
    Davidson IF; Peters JM
    Nat Rev Mol Cell Biol; 2021 Jul; 22(7):445-464. PubMed ID: 33767413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomerization and ATP stimulate condensin-mediated DNA compaction.
    Keenholtz RA; Dhanaraman T; Palou R; Yu J; D'Amours D; Marko JF
    Sci Rep; 2017 Oct; 7(1):14279. PubMed ID: 29079757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits.
    Piazza I; Rutkowska A; Ori A; Walczak M; Metz J; Pelechano V; Beck M; Haering CH
    Nat Struct Mol Biol; 2014 Jun; 21(6):560-8. PubMed ID: 24837193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.